This Poisson time inference
next time: vector

A note on conditional probability:

\[P(A \mid BC) = \begin{cases} \frac{P(ABC)}{P(BC)} & \text{if } P(BC) > 0 \\ \text{undefined} & \text{if } P(BC) = 0 \end{cases} \]

if either \(P(B=0) \) or \(P(C=0) \), \(P(A \mid BC) = \text{undefined} \)

\[P = (\theta, C) \stackrel{\text{maximize}}{\rightarrow} (\hat{\theta}, \hat{C}) \]

problem question(s)

\[M = \{ P(\theta \mid B), P(D \mid \theta, B) \} \]

\[\text{inference, prediction, statistical model} \]
\(M^* = \{ p(0|B), p(1|B B), (\rho|B), u(0, 0|B) \} \)

Inference, prediction, decision

Theorem: If can uniquely specify \(M^* \), then it is optimal inference & prediction.

Theorem: If \(M^* \), then it is optimal inference & decision.

It would be neat if \(C + B \) always uniquely specifies \(p(0|B) \) but it's actually somewhat for unique choices \(u(0, 0|B) \), of these 4 things to arise from \(C + B \).
ex. AMI case study:

\[(I_i \mid \theta, B) \sim \text{Bernoulli}(\theta) \]
\[(i = 1, \ldots, n) \]

This is uniquely determined by $C : \{ \text{defining } H_i's \text{ then} \}$. Before $D = (y_1, \ldots, y_n)$ arrives, your uncertainty about the y_i is exchangeable:

If \[\theta \sim \text{Bernoulli}(\theta) \] but $p(\theta \mid B)$ was not unique in this case study.

In general, we have uncertainty about (M, M^*): model uncertainty.
\[u = x^2 + y^2 = 12 \]

\[a = 1 \]

\[b = 2 \]

\[c = 3 \]

\[\theta = \frac{\pi}{2} \]

\[\text{joint dist.} \]

\[(x_1, x_2, \ldots, x_n) \]

\[(y_1, y_2, \ldots, y_n) \]
\[\frac{d}{d\lambda} \mathbb{E} (z | \lambda) = \frac{5}{\lambda} - \frac{5}{\lambda^2} \]

\[2 = \hat{\lambda}_{\text{MLE}} \]

\[\begin{bmatrix} \frac{d^2}{d\lambda^2} \mathbb{E} (z | \lambda) \end{bmatrix} \]

\[x > 0 \quad \text{local max.} \]

\[I(\hat{\lambda}_{\text{MLE}}) = \frac{\lambda}{\hat{\lambda}^2} \]

\[\hat{\lambda}_{\text{MLE}} = \frac{5}{n} = o(n) \checkmark \]

\[\text{Var}(\hat{\lambda}_{\text{MLE}}) = \frac{1}{I(\hat{\lambda})} \]

\[\frac{7}{5} = o\left(\frac{1}{n} \right) \]
\[SE_{\hat{\theta}}(\hat{\theta}_{MLE}) = \sqrt{\hat{\theta}_{MLE} - \hat{\theta}_{MLE}^2} \]

\[= O\left(\frac{1}{\sqrt{n}}\right) \quad \text{for \ (n \ large)} \quad \text{CLT} \]

approx. 95% CI for \[\hat{\theta}_{MLE} \pm 1.96 \ SE(\hat{\theta}_{MLE}) \]

\[100(1-\alpha)% \]

\[\text{Bivariate Poisson} \]

\[\mathcal{P}(r|\alpha) \sim \frac{\alpha^r}{r!} e^{-\alpha} \]

\[\frac{\mathcal{P}(r|\alpha)}{\mathcal{P}(r'|\alpha)} = \frac{\alpha^r}{\alpha^{r'}} \frac{r!}{r!'!} e^{-\alpha} \]

\[\alpha(\tilde{y}) = c \tilde{y} e^{-\tilde{y}} \quad \text{is \ sufficient} \]

\[p(x) = c x^{\alpha-1} e^{-\beta x} \quad \text{for x } \]
\[F(z) = c \left[\exp \left(-\frac{z}{\theta} \right) \right] \left[\exp \left(-\frac{\theta}{z} \right) \right] \]

post.

\[-c \leq \frac{\theta}{z} \leq (d+s)-1 \quad \text{lik.} \]

\[= \int (d+s, \beta+n) \]

\[(X_i \mid \beta, \theta) \sim \Gamma(\alpha, \beta) \]

\[(Y_i \mid \alpha, \beta, \theta) \sim \text{Poisson} (\theta) \]

\[(i = 1, \ldots, n) \]

\[+ \prod_{i=1}^{n} \Gamma (\alpha_i, \beta_i, \theta) \sim \Gamma (d+s, \beta+n), \]

\[s = \sum_{i=1}^{n} y_i \]

Principle of Stable Estimation (Edwards, Savage, Lindeman)
Any prior that is close to flat in the region in which the likelihood is appreciable will have low information content.