Predictive diagnostics reveal that m_{current} is not good enough; what now?

(model) A: So model expansion: embed m_{current} in a richer model class, of which it's a special case, with the "direction" of "richer" determined by what the predictive diagnostics showed you is wrong with m_{current}.

\[
A_{\text{richer}} \quad \text{and} \quad m_{\text{current}}
\]

Here, deficiency of m_{current}:
\[
\{ (\mu, \sigma^2) \mid \mathbf{x} \sim \mathcal{N}(\mu, \sigma^2) \} \quad \text{weakly} \quad \rightarrow \quad \{ (\bar{\mu}, 1/\sigma^2) \mid \mathbf{x} \sim \mathcal{N}(\mu, \sigma^2) \}
\]

r_{richer} should have heavier tails than m_{current}: G.
A: we need a new, more general, concept.

Bayes' theorem has no conjugate prior, now.

\[(E, \varnothing, \{\{(x_i, y_i)\} \mid i \in N \}) \to \mathbb{P}(\theta) \]

\[(E, \varnothing, \{\{(x_i, y_i)\} \mid i \in N \}) \to \mathbb{P}(\theta) \]

\[(E, \varnothing, \{\{(x_i, y_i)\} \mid i \in N \}) \to \mathbb{P}(\theta) \]
\(\theta = (\beta_0, \beta_1, \ldots, \beta_k, \sigma) \sim \mathcal{N}(k) \quad (k > n)\)

\(\beta_j = 0 \iff \text{feature } j \text{ does not help predict } y\quad (j = 1, \ldots, k)\)

\[
p(\theta | y) = c
\]

\[
p(\theta) \cdot p(y | \theta)
\]

only at most \(k, < n\) of the \(\beta_j\) are nonzero in study

\[
(\theta = \{\theta_1, \ldots, \theta_k\})
\]

\[
k = 10,000\quad k = 32,000
\]

Icelandic genome study