AMS 206: Classical and Bayesian Inference

David Draper
Department of Applied Mathematics and Statistics
University of California, Santa Cruz
draper@ucsc.edu
www.ams.ucsc.edu/~draper
Lecture Notes (Part 1)

An Example, to Fix Ideas

Case Study 1. (Krnjajić, Kottas, Draper 2008): In-home geriatric assessment (IHGA). In an experiment conducted in the 1980s (Hendriksen et al., 1984), 572 elderly people, representative of $\mathcal{P}=$ \{all non-institutionalized elderly people in Denmark\}, were randomized, 287 to a control (C) group (who received standard health care) and 285 to a treatment (T) group (who received standard care plus IHGA: a kind of preventive medicine in which each person's medical and social needs were assessed and acted upon individually).

One important outcome was the number of hospitalizations during the two-year life of the study:

	Number of Hospitalizations						
Group	0	1	\ldots	m	n	Mean	SD
Control	$n_{C 0}$	$n_{C 1}$	\ldots	$n_{C m}$	$n_{C}=287$	\bar{y}_{C}	s_{C}
Treatment	$n_{T 0}$	$n_{T 1}$	\ldots	$n_{T m}$	$n_{T}=285$	\bar{y}_{T}	s_{T}

Let μ_{C} and μ_{T} be the mean hospitalization rates (per two years) in \mathcal{P} under the C and T conditions, respectively.

Here are four statistical questions that arose from this study:

The Four Principal Statistical Activities

Q_{1} : Was the mean number of hospitalizations per two years in the IHGA group different from that in control by an amount that was large in practical terms? [description involving $\left(\frac{\bar{y}_{T}-\bar{y}_{c}}{\bar{y}_{c}}\right)$]
Q_{2} : Did IHGA (causally) change the mean number of hospitalizations per two years by an amount that was large in statistical terms? $\left[\right.$ inference about $\left.\left(\frac{\mu_{T}-\mu_{c}}{\mu_{C}}\right)\right]$
$Q_{3}:$ On the basis of this study, how accurately can You predict the total decrease in hospitalizations over a period of N years if IHGA were implemented throughout Denmark? [prediction]
Q4: On the basis of this study, is the decision to implement IHGA throughout Denmark optimal from a cost-benefit point of view? [decision-making]
These questions encompass almost all of the discipline of statistics: describing a data set D, generalizing outward inferentially from D, predicting new data D^{*}, and helping people make decisions in the presence of uncertainty (1 include sampling/experimental design under decision-making; omitted: data wrangling, ...).

An Informal Axiomatization of Statistics

1 (definition) Statistics is the study of uncertainty: how to measure it well, and how to make good choices in the face of it.

2 (definition) Uncertainty is a state of incomplete information about something of interest to You (Good, 1950: a generic person wishing to reason sensibly in the presence of uncertainty).

3 (axiom) (Your uncertainty about) "Something of interest to You" can always be expressed in terms of propositions: true/false statements A, B, \ldots

Examples: You may be uncertain about the truth status of

- $A=$ (Donald Trump will be re-elected U.S. President in 2020), or
- $B=$ (the in-hospital mortality rate for patients at hospital H admitted in calendar 2010 with a principal diagnosis of heart attack was between 5% and 25%).

4 (implication) It follows from $1-3$ that statistics concerns Your information (NOT Your beliefs) about A, B, \ldots

Axiomatization (continued)

5 (axiom) But Your information cannot be assessed in a vacuum: all such assessments must be made relative to (conditional on) Your background assumptions and judgments about how the world works vis à vis A, B, \ldots.

6 (axiom) These assumptions and judgments, which are themselves a form of information, can always be expressed in a finite set $\mathcal{B}=\left\{B_{1}, \ldots, B_{b}\right\}$ of propositions (examples below).

7 (definition) Call the "something of interest to You" θ; in applications θ is often a vector (or matrix, or array) of real numbers, but in principle it could be almost anything (a function, an image of the surface of Mars, a phylogenetic tree, ...).

8 (axiom) There will typically be an information source (data set) D that You judge to be relevant to decreasing Your uncertainty about θ; in applications D is often again a vector (or matrix, or array) of real numbers, but in principle it too could be almost anything (a movie, the words in a book, ...).

Axiomatization (continued)

Examples of \mathcal{B} :

- If θ is the mean survival time for a specified group of patients (who are alive now), then \mathcal{B} includes the proposition $(\theta \geq 0)$.
- If D is the result of an experiment E, then \mathcal{B} might include the proposition (Patients were randomized into one of two groups, treatment (new drug) or control (current best drug)).

9 (implication) The presence of D creates a dichotomy:

- Your information about θ \{internal, external $\}$ to D.
(People often talk about a different dichotomy: Your information about θ \{before, after\} D arrives (prior, posterior), but temporal considerations are actually irrelevant.)

10 (implication) It follows from $1-9$ that statistics concerns itself principally with five things (omitted: description, data wrangling, ...):
(1) Quantifying Your information about θ internal to D (given \mathcal{B}), and doing so well (this term is not yet defined);
(2) Quantifying Your information about θ external to D (given \mathcal{B}), and doing so well;
(3) Combining these two information sources (and doing so well) to create a summary of Your uncertainty about θ (given \mathcal{B}) that includes all available information You judge to be relevant (this is inference);
and using all Your information about θ (given \mathcal{B}) to make
(4) Predictions about future data values D^{*} and
(5) Decisions about how to act sensibly, even though Your information about θ may be incomplete.

Foundational question: How should these tasks be accomplished?
This question has been addressed by Bruno de Finetti, in work he did from the 1920s through the 1970s, and by the American physicists Richard T. Cox (1946) and Edwin T. Jaynes (2002).

The Cox-Jaynes Theorem - recently rigorized and extended by Terenin and Draper (2015) - says that

- If You're prepared to uniquely specify two probability distributions - $p(\theta \mid \mathcal{B})$, encoding Your information about θ external to D, and $p(D \mid \theta \mathcal{B})$, capturing Your information about θ internal to D then
- optimal inference about θ is based on the distribution

$$
\begin{equation*}
p(\theta \mid D \mathcal{B}) \propto p(\theta \mid \mathcal{B}) p(D \mid \theta \mathcal{B}) \tag{1}
\end{equation*}
$$

(here optimal $=\{$ all relevant information is used appropriately, and no other "information" is inadvertently smuggled in\}), and

- optimal prediction of new data D^{*} is based on the distribution

$$
\begin{equation*}
p\left(D^{*} \mid D \mathcal{B}\right)=\int_{\Theta} p\left(D^{*} \mid \theta D \mathcal{B}\right) p(\theta \mid D \mathcal{B}) d \theta \tag{2}
\end{equation*}
$$

where Θ is the set of possible values of θ;

Optimal Model Specification

- and if You're further prepared to uniquely specify two more ingredients - Your action space $a \in(\mathcal{A} \mid \mathcal{B})$ and Your utility function $U(a, \theta \mid \mathcal{B})$ - then optimal decision-making is attained by maximizing expected utility:

$$
\begin{equation*}
a^{*}=\underset{a \in(\mathcal{A} \mid \mathcal{B})}{\operatorname{argmax}} \int_{\Theta} U(a, \theta \mid \mathcal{B}) p(\theta \mid D \mathcal{B}) d \theta \tag{3}
\end{equation*}
$$

- Let's agree to call $M=\{p(\theta \mid \mathcal{B}), p(D \mid \theta \mathcal{B})\}$ Your model for Your uncertainty about θ and D^{*}, and $M_{d}=\{p(\theta \mid \mathcal{B}), p(D \mid \theta \mathcal{B})$,
$(\mathcal{A} \mid \mathcal{B}), U(a, \theta \mid \mathcal{B})\}$ Your model for Your decision uncertainty.
- The two main practical challenges in using this Theorem are
- (technical) Integrals arising in computing the inferential and predictive distributions and the expected utility may be difficult to approximate accurately (and the action space may be difficult to search well), and
- (substantive) The mapping from the problem $\mathbb{P}=(\mathbb{Q}, \mathbb{C})$ $\mathbb{Q}=$ questions, $\mathbb{C}=$ context - to $M=\{p(\theta \mid \mathcal{B}), p(D \mid \theta \mathcal{B})\}$ and $M_{d}=\{p(\theta \mid \mathcal{B}), p(D \mid \theta \mathcal{B}),(\mathcal{A} \mid \mathcal{B}), U(a, \theta \mid \mathcal{B})\}$ is rarely unique, giving rise to model uncertainty.

Data-Science Example: A / B Testing

- Definition: In model specification, optimal = \{conditioning only on propositions rendered true by the context of the problem and the design of the data-gathering process, while at the same time ensuring that the set of conditioning propositions includes all relevant problem context $\}$.
- Q: Is optimal model specification possible?
- A: Yes, sometimes; for instance, Bayesian non-parametric modeling is an important approach to model specification optimality.
- Case Study 2:
A / B testing (randomized controlled experiments) in data science.
- eCommerce company X interacts with users through its web site; the company is constantly interested in improving its web experience, so (without telling the users) it randomly assigns them to treatment (A : a new variation on (e.g.) how information is presented) or control (B : the current best version of the web site) groups.

A / B Testing

- Let \mathcal{P} be the population of company X users at time $($ now $+\Delta)$, in which Δ is fairly small (e.g., several months).
- In a typical A / B test, $\left(n^{C}+n^{T}\right)$ users are sampled randomly from a proxy for \mathcal{P} - the population of company X users at time now - with n^{C} of these users assigned at random to C and n^{T} to T.
- The experimental users are monitored for k weeks (typically $2 \leq k \leq 6$), and a summary $y \in \mathbb{R}$ of their use of the web site (aggregated over the k weeks) is chosen as the principal outcome variable; often y is either monetary or measures user satisfaction; typically $y \geq 0$, which I assume in what follows.
- Let y_{i}^{C} be the outcome value for user i in C, and let y^{C} be the vector (of length n^{C}) of all C values; define y_{j}^{T} and y^{T} (of length n^{T}) analogously; Your total data set is then $D=\left(y^{C}, y^{T}\right)$.
- Before the data set arrives, Your uncertainty about the y_{i}^{C} and y_{j}^{T} values is conditionally exchangeable given the experimental group indicators $I=(1$ if $T, 0$ if $C)$.

Bayesian Non-Parametric Modeling

- Therefore, by de Finetti's most important Representation Theorem, Your predictive uncertainty about D is expressible hierarchically as

$$
\begin{array}{ccc|ccc}
\left(F^{C} \mid \mathcal{B}\right) & \sim & p\left(F^{C} \mid \mathcal{B}\right) & \left(F^{T} \mid \mathcal{B}\right) & \sim & p\left(F^{T} \mid \mathcal{B}\right) \tag{4}\\
\left(y_{i}^{C} \mid F^{C} \mathcal{B}\right) & \stackrel{\| D}{\sim} & F^{C} & \left(y_{j}^{T} \mid F^{T} \mathcal{B}\right) & \stackrel{\sim}{\sim} & F^{T}
\end{array}
$$

- Here F^{C} is the empirical CDF of the y values You would see in the population \mathcal{P} to which You're interested in generalizing inferentially
if all users in \mathcal{P} were to receive the C version of the web experience, and F^{T} is the analogous empirical CDF if instead those same users were to counterfactually receive the T version.
- Assume that the means $\mu^{C}=\int y d F^{C}(y)$ and $\mu^{T}=\int y d F^{T}(y)$ exist and are finite, and define

$$
\begin{equation*}
\theta \triangleq \frac{\mu^{T}-\mu^{C}}{\mu^{C}} ; \tag{5}
\end{equation*}
$$

in eCommerce this is referred to as the lift caused by the treatment.

Optimal Bayesian Model Specification

$$
\begin{array}{ccc|ccc}
\left(F^{C} \mid \mathcal{B}\right) & \sim & p\left(F^{C} \mid \mathcal{B}\right) & \left(F^{T} \mid \mathcal{B}\right) & \sim & p\left(F^{T} \mid \mathcal{B}\right) \\
\left(y_{i}^{C} \mid F^{C} \mathcal{B}\right) & \stackrel{I I D}{\sim} & F^{C} & \left(y_{j}^{T} \mid F^{T} \mathcal{B}\right) & \stackrel{\sim}{\sim} & F^{T}
\end{array}
$$

- I claim that this is an instance of optimal Bayesian model specification: this Bayesian non-parametric (BNP) model arises from exchangeability assumptions implied directly by problem context.
- I now instantiate this model with Dirichlet process priors placed directly on the data scale:

$$
\begin{array}{ccc|ccc}
\left(F^{C} \mid \mathcal{B}\right) & \sim & D P\left(\alpha^{C}, F_{0}^{C}\right) & \left(F^{T} \mid \mathcal{B}\right) & \sim & D P\left(\alpha^{T}, F_{0}^{T}\right) \tag{6}\\
\left(y_{i}^{C} \mid F^{C} \mathcal{B}\right) & \stackrel{\| D}{\sim} & F^{C} & \left(y_{j}^{T} \mid F^{T} \mathcal{B}\right) & \stackrel{\sim}{\sim} & F^{T}
\end{array}
$$

- The usual conjugate updating produces the posterior

$$
\begin{equation*}
\left(F^{C} \mid y^{C} \mathcal{B}\right) \sim D P\left(\alpha^{C}+n^{C}, \frac{\alpha^{C} F_{0}^{C}+n \hat{F}_{n}^{C}}{\alpha^{C}+n^{C}}\right) \tag{7}
\end{equation*}
$$

and analogously for F^{T}, where \hat{F}_{n}^{C} is the empirical CDF defined by the control group data vector y^{C}; these posteriors for F^{C} and F^{T} induce posteriors for μ^{C} and μ^{T}, and thus for θ.

$$
\left(F^{C} \mid y^{C} \mathcal{B}\right) \sim D P\left(\alpha^{C}+n^{C}, \frac{\alpha^{C} F_{0}^{C}+n^{C} \hat{F}_{n}^{C}}{\alpha^{C}+n^{C}}\right)
$$

- How to specify $\left(\alpha^{C}, F_{0}^{C}, \alpha^{T}, F_{0}^{T}\right)$? In part 2 of the talk I'll describe a method for incorporating C information from other experiments; in eCommerce it's controversial to combine information across T groups; so here I'll present an analysis in which little information external to $\left(y^{C}, y^{\top}\right)$ is available.
- This corresponds to α^{C} and α^{T} values close to 0 , and - with the large n^{C} and n^{T} values typical in A / B testing and $\alpha^{C} \doteq \alpha^{T} \doteq 0-$ it doesn't matter what You take for F_{0}^{C} and F_{0}^{T}; in the limit as $\left(\alpha^{C}, \alpha^{T}\right) \downarrow 0$ You get the posteriors

$$
\begin{equation*}
\left(F^{C} \mid y^{c} \mathcal{B}\right) \sim D P\left(n^{c}, \hat{F}_{n}^{C}\right) \quad\left(F^{T} \mid y^{\top} \mathcal{B}\right) \sim D P\left(n^{T}, \hat{F}_{n}^{T}\right) \tag{8}
\end{equation*}
$$

In my view the $D P\left(n, \hat{F}_{n}\right)$ posterior should get far more use in applied Bayesian work than it now does: it arises directly from problem context in many settings, and (next slide) is readily computable.

$$
\left(F^{C} \mid y^{C} \mathcal{B}\right) \sim D P\left(n^{C}, \hat{F}_{n}^{C}\right) \quad\left(F^{T} \mid y^{T} \mathcal{B}\right) \sim D P\left(n^{T}, \hat{F}_{n}^{T}\right)
$$

- How to quickly simulate F draws from $D P\left(n, \hat{F}_{n}\right)$ when n is large (e.g., $O\left(10^{7}\right)$ or more)? You can of course use stick-breaking (Sethuramen 1994), but this is slow because the size of the next stick fragment depends sequentially on how much of the stick has already been allocated.
- Instead, use the Pólya Urn representation of the DP predictive distribution (Blackwell and MacQueen 1973): having observed $y=\left(y_{1}, \ldots, y_{n}\right)$ from the model $(F \mid \mathcal{B}) \sim D P\left(\alpha, F_{0}\right)$, $\left(y_{i} \mid F \mathcal{B}\right) \stackrel{\text { IID }}{\sim} F$, by marginalizing over F You can show that to make a draw from the posterior predictive for y_{n+1} You just sample from \hat{F}_{n} with probability $\frac{n}{\alpha+n}$ (and from F_{0} with probability $\left.\frac{\alpha}{\alpha+n}\right)$; as $\alpha \downarrow 0$ this becomes simply making a random draw from $\left(y_{1}, \ldots, y_{n}\right)$; and it turns out that, to make an F draw from $(F \mid y \mathcal{B})$ that stochastically matches what You would get from stick-breaking, You just make n IID draws from $\left(y_{1}, \ldots, y_{n}\right)$ and form the empirical CDF based on these draws.

The Frequentist Bootstrap in BNP Calculations

- This is precisely the frequentist bootstrap (Efron 1979), which turns out to be about 30 times faster than stick-breaking and is embarrassingly parallelizable to boot (e.g., Alex Terenin tells me that this is ludicrously easy to implement in MapReduce).
- Therefore, to simulate from the posterior for θ in this model: for large M
(1) Take M independent bootstrap samples from y^{C}, calculating the sample means μ_{*}^{C} of each of these bootstrap samples;
(2) Repeat (1) on y^{T}, obtaining the vector μ_{*}^{T} of length M; and
(3) Make the vector calculation $\theta_{*}=\frac{\mu_{*}^{T}-\mu_{*}^{C}}{\mu_{*}^{C}}$.
- I claim that this is an essentially optimal Bayesian analysis (the only assumption not driven by problem context was the choice of the DP prior, when other BNP priors are available).
- Examples: Two experiments at company X, conducted a few years ago; E_{1} involved about $\mathbf{2 4 . 5}$ million users, and E_{2} about 257,000 users; in both cases the outcome y was monetary, expressed here in Monetary Units (MUs), a monotonic increasing transformation of US\$.

Visualizing E_{1}

- In both C and T in $E_{1}, 90.7 \%$ of the users had $y=\mathbf{0}$, but the remaining non-zero values ranged up to 162,000 .

Numerical Summaries of E_{1} and E_{2}

Descriptive summaries of a monetary outcome y measured in two A / B tests E_{1} and E_{2} at eCommerce company $X ; S D=$ standard deviation.

			MU			
Experiment	n	$\% 0$	Mean	SD	Skewness	Kurtosis
$E_{1}: T$	$12,234,293$	90.7	9.128	129.7	157.6	59,247
$E_{1}: C$	$12,231,500$	90.7	9.203	147.8	328.9	266,640
$E_{2}: T$	128,349	70.1	$1,080.8$	$33,095.8$	205.9	52,888
$E_{2}: C$	128,372	70.0	$1,016.2$	$36,484.9$	289.1	92,750

- The outcome y in C in E_{1} had skewness 329 (Gaussian 0) and kurtosis 267,000 (Gaussian 0); the noise-to-signal ratio (SD/mean) in C in E_{2} was 36.
- The estimated lift in E_{1} was $\hat{\theta}=\frac{9.128-9.203}{9.203} \doteq-0.8 \%$ (i.e., T made things worse); in $E_{2}, \hat{\theta}=\frac{1080.8-1016.2}{1016.2} \doteq+6.4 \%$ (highly promising), but the between-user variability in the outcome y in E_{2} was massive (SDs in C and T on the order of $\mathbf{3 6 , 0 0 0}$).

Sampling from The Posteriors For F^{C} and F^{T}

In E_{1}, with $n=\mathbf{1 2}$ million in each group, posterior uncertainty about F does not begin to exhibit itself (reading left to right) until about $e^{9} \doteq 8,100 \mathrm{MUs}$, which corresponds to the $\operatorname{logit}^{-1}(10)=99.9995$ th percentile; but with the mean at stake and violently skewed and kurtotic distributions, extremely high percentiles are precisely the distributional locations of greatest leverage.

What Does The Central Limit Theorem Have To Say?

- $\hat{\theta}$ is driven by the sample means \bar{y}^{C} and \bar{y}^{T}, so with large enough sample sizes the posterior for θ will be close to Gaussian (by the Bayesian CLT), rendering the bootstrapping unnecessary, but the skewness and kurtosis values for the outcome y are large; when does the CLT kick in?
- Not-widely-known fact: under IID sampling,

$$
\begin{equation*}
\operatorname{skewness}\left(\bar{y}_{n}\right)=\frac{\operatorname{skewness}\left(y_{1}\right)}{\sqrt{n}} \text { and } \operatorname{kurtosis}\left(\bar{y}_{n}\right)=\frac{\operatorname{kurtosis}\left(y_{1}\right)}{n} . \tag{9}
\end{equation*}
$$

$E_{1}(C)$		
n	skewness $\left(\bar{y}_{n}\right)$	kurtosis $\left(\bar{y}_{n}\right)$
1	328.9	$266,640.0$
10	104.0	$26,664.0$
100	32.9	$2,666.4$
1,000	10.4	266.6
10,000	3.3	26.7
100,000	1.0	2.7
$1,000,000$	0.3	0.3
$10,000,000$	0.1	0.0

Exact and Approximate Posteriors for θ

BNP posterior distributions (solid curves) for the lift θ in E_{1} (upper left) and E_{2} (upper right), with Gaussian approximations (dotted lines) superimposed; lower left: the θ posteriors from E_{1} and E_{2} on the same graph, to give a sense of relative information content in the two experiments; lower right: BNP and approximate-Gaussian posteriors for θ in a small subgroup (segment) of E_{2}.

eCommerce Conclusions

$B N P$ inferential summaries of lift in the two A / B tests E_{1} and E_{2}.

		Posterior for $\theta(\%)$		$P\left(\theta>0 \mid y^{\top} y^{\top} \mathcal{B}\right)$	
Experiment	Total n	Mean	SD	BNP	Gaussian
E_{1}	$24,465,793$	-0.818	0.608	0.0894	0.0892
E_{2} full	256,721	+6.365	14.01	0.6955	0.6752
E_{2} segment	23,674	+5.496	34.26	0.5075	0.5637

The bottom row of this table presents the results for a small subgroup
(known in eCommerce as a segment) of users in E_{2}, identified by a particular set of covariates; the combined sample size here is "only" about 24,000, and the Gaussian approximation to $P\left(\theta>0 \mid y^{\top} y^{C} \mathcal{B}\right)$ is too high by more than 11%.

From a business perspective, the treatment intervention in E_{1} was demonstrably a failure, with an estimated lift that represents a loss of about 0.8%; the treatment in E_{2} was highly promising - $\hat{\theta} \doteq+6.4 \%$

- but (with an outcome variable this noisy) the total sample size of "only" about 257,000 was insufficient to demonstrate its effectiveness convincingly.

Combining Information Across Similar Control Groups

NB In the Gaussian approximation, the posterior for θ is Normal with

$$
\begin{align*}
& \text { mean } \hat{\theta}=\frac{\bar{y}^{\top}-\bar{y}^{C}}{\bar{y}} \text { and (by Taylor expansion) } \\
& \qquad S D\left(\theta \mid y^{\top} y^{C} \mathcal{B}\right) \doteq \sqrt{\frac{\bar{y}_{T}^{2} s_{C}^{2}}{\bar{y}_{C}^{4} n_{C}}+\frac{s_{T}^{2}}{\bar{y}_{C}^{2} n_{T}}} \tag{10}
\end{align*}
$$

- Extension: Borrowing strength across similar control groups.
- In practice eCommerce company X runs a number of experiments simultaneously, making it possible to consider a modeling strategy in which T data in experiment E is compared with a combination of $\{C$ data from E plus data from similar C groups in other experiments $\}$.
- Suppose therefore that You judge control groups $\left(C_{1}, \ldots, C_{N}\right)$ exchangeable - not directly poolable, but like random draws from a common C reservoir (as with random-effects hierarchical models, in which between-group heterogeneity among the C_{i} is explicitly acknowledged).

BNP For Combining Information

- An extension of the BNP modeling in part I to accommodate this new borrowing of strength would look like this: for $i=1, \ldots, N$ and $j=1, \ldots, n_{\text {group }}$,

$$
\begin{array}{ccc}
\left(F^{T} \mid \mathcal{B}\right) & \sim & D P\left(\alpha^{T}, F_{0}^{T}\right) \\
\left(y_{j}^{T} \mid F^{T} \mathcal{B}\right) & \stackrel{\Pi I D}{\sim} & F^{T} \tag{11}
\end{array}
$$

$$
\begin{array}{ccc}
\left(F_{0}^{C} \mid \mathcal{B}\right) & \sim & D P(\gamma, G) \\
\left(F^{C_{i}} \mid F_{0}^{C} \mathcal{B}\right) & \stackrel{\| D}{\sim} & D P\left(\alpha^{C}, F_{0}^{C}\right) \\
\left(y_{j}^{C_{i}} \mid F^{C} \cdot \mathcal{B}\right) & \stackrel{\| D}{\sim} & F^{C_{i}}
\end{array}
$$

- The modeling in the C groups is an example of a hierarchical Dirichlet process (Teh, Jordan, Beal and Blei 2005).
- I've not yet implemented this model; with the large sample sizes in eCommerce, $D P\left(n, \hat{F}_{n}\right)$ will again be central, and some version of frequentist bootstrapping will again do the calculations quickly.
- Suppose for the rest of the talk that the sample sizes are large enough for the Gaussian approximation in part I to hold:

$$
\begin{equation*}
\left(\mu^{T} \mid y^{T} \mathcal{B}\right) \dot{\sim} N\left[\bar{y}^{T}, \frac{\left(s^{T}\right)^{2}}{n^{T}}\right] \quad \text { and } \quad\left(\mu^{c_{i}} \mid y^{c_{i}} \mathcal{B}\right) \dot{\sim}\left[\bar{y} c^{c_{i}}, \frac{\left(s^{c_{i}}\right)^{2}}{n^{c_{i}}}\right] \tag{12}
\end{equation*}
$$

Approximate BNP With 100 Million Observations

$$
\left(\mu^{T} \mid y^{T} \mathcal{B}\right) \dot{\sim}\left[\bar{y}^{T}, \frac{\left(s^{T}\right)^{2}}{n^{T}}\right] \quad \text { and } \quad\left(\mu^{C_{i}} \mid y^{C_{i}} \mathcal{B}\right) \dot{\sim}\left[\bar{y}^{C_{i}}, \frac{\left(s^{C_{i}}\right)^{2}}{n^{C_{i}}}\right]
$$

With n^{T} and the $n^{C_{i}} \doteq \mathbf{1 0}$ million each and (e.g.) $N \doteq 10$, the above equation represents a fully efficient summary of an approximate BNP analysis of O (100 million) observations.

- Now simply turn the above Gaussian relationships around to induce the likelihood function in a hierarchical Gaussian random-effects model (the sample sizes are so large that the within-groups sample SDs (e.g., s^{T}) can be regarded as known):

$\left(\mu^{T} \mid \mathcal{B}\right)$	\propto	1			
$\left(\bar{y}^{T} \mid \mu^{T} \mathcal{B}\right)$	\sim	$N\left[\mu^{T}, \frac{\left(s^{T}\right)^{2}}{n^{T}}\right]$	$\left(\mu^{C} \mid \sigma \mathcal{B}\right)$	\propto	$U(0, A)$
$\left(\mu^{C_{i}} \mid \mu^{C} \sigma \mathcal{B}\right)$	$\stackrel{\prime \prime}{\sim}$	$N\left(\mu^{C}, \sigma^{2}\right)$			
$\left(\bar{y}^{C_{i}} \mid \mu^{C_{i}} \mathcal{B}\right)$	\sim	$N\left[\mu^{C_{i}}, \frac{\left(s^{C_{i}}\right)^{2}}{n^{C_{i}}}\right]$			

- The Uniform $(0, A)$ prior on the between- C-groups SD σ has been shown (e.g., Gelman 2006) to have good calibration properties (choose A just large enough to avoid likelihood truncation).

In Spiegelhalter's Honor

```
{
    eta.C ~ dflat( )
    sigma.mu.C ~ dunif( O.0, A )
    mu.T ~ dflat( )
    y.bar.T ~ dnorm( mu.T, tau.mu.T )
    for ( i in 1:N ) {
        y.bar.C[ i ] ~ dnorm( mu.C[ i ], tau.y.bar.C[ i ] )
        mu.C[ i ] ~ dnorm( eta.C, tau.mu.C )
    }
    tau.mu.C <- 1.0 / ( sigma.mu.C * sigma.mu.C )
    theta <- ( mu.T - eta.C ) / eta.C
    theta.positive <- step( theta )
}
```


One C Group First

```
list( \(\mathrm{A}=0.001\),
    y.bar.T = 9.286,
    tau.mu.T \(=727.28\),
    \(\mathrm{N}=1\),
    y.bar.C \(=c(9.203)\),
    tau.y.bar.C \(=c(559.94)\)
    )
list ( eta.C = 9.203,
    sigma.mu. C = 0.0,
    \(\mathrm{mu} . \mathrm{T}=9.286\)
    )
```

group
n mean y sd mean
mu sd
theta
mean sd positive

```
T 12234293 9.286 129.7 9.286 0.03708
C 12231500 9.203 147.8 9.203 0.04217 0.008904 0.006165 0.9276
```

- Start with one C group: simulated data similar to E_{1} in part I but with a bigger treatment effect - total sample size $\mathbf{2 4 . 5}$ million, $\bar{y}^{T}=9.286, \bar{y}^{C}=9.203, \hat{\theta}=+0.9 \%$ with posterior SD $\mathbf{0 . 6 \%}$, posterior probability of positive effect 0.93 .

Two C Groups

group		y		mu		theta		
	n	mean	sd	mean	sd	mean	sd	sitive
T	12234293	9.286	129.7	9.286	0.03704			
C1	12231500	9.203	147.8	9.203	0.03263			
C2	12232367	9.204	140.1	9.204	0.03196			
C	24463867	---	---	9.204	0.03458	0.008973	0.005538	0.9487

- Now two C groups, chosen to be quite homogeneous (group means 9.203 and 9.204 , simulated from $\sigma=\mathbf{0 . 0 1}$) - with truncation point $A=0.05$ in the Uniform prior for σ, the posterior mean for θ is about the same as before ($+0.9 \%$) but the posterior SD has dropped from 0.61% to 0.55% (strength is being borrowed), and the posterior probability of a positive effect has risen to $\mathbf{9 5 \%}$.
- However, has $A=0.05$ inadvertently truncated the likelihood for σ ?

$$
A=0.05
$$

$A=0.1$: Borrowing Strength Seems to Disappear

group		y		mu		theta		
	n	mean	sd	mean	sd	mean		positive
T	12234293	9.286	129.7	9.286	0.03704			
C1	12231500	9.203	147.8	9.203	0.03535			
C2	12232367	9.204	140.1	9.204	0.03426			
C	24463867	---	---	9.203	0.04563	0.009011	0.006434	0.9231

- With $A=0.1$, the posterior SD for θ rises to $\mathbf{0 . 6 4 \%}$, and the posterior probability of a positive lift ($\mathbf{9 2 \%}$) is now smaller than when only one C group was used - the borrowing of strength seems to have disappeared.
- Moreover, $A=0.1$ still leads to truncation; exploration reveals that truncation doesn't start to become negligible until $A \geq \mathbf{2 . 0}$ (and remember that the actual value of σ in this simulated data set was 0.01).

You Can Get Anything You Want

$A=0.1$

group
mu

theta
mean
sd positive

$$
\begin{array}{llllll}
\text { T } & 12234293 & 9.286 & 129.7 & 9.286 & 0.03704
\end{array}
$$

$$
\text { C1 } 122315009.203147 .8 \quad 9.2030 .03981 \quad \text { (this is with } \mathrm{A}=2.0 \text {) }
$$

$$
\begin{array}{llllll}
\text { C2 } & 12232367 & 9.204 & 140.1 & 9.204 & 0.03794
\end{array}
$$

C 24463867
9.2040 .4691
0.01164
0.05475
0.7341

Between-C-Groups Heterogeneity

- The right way to set A (I haven't done this yet) is via inferential calibration on the target quantity of interest θ : create a simulation environment identical to the real-world setting ($n^{T}=$ $12,234,293 ; n^{C_{1}}=12,231,500 ; n^{C_{2}}=12,232,367 ; s^{T}=0.03704 ;$ $\left.s^{C_{1}}=0.03981 ; s^{C_{2}}=0.03794\right)$ except that $\left(\mu^{T}, \mu^{C}, \theta, \sigma\right)$ are known to be $(9.286 ; 9.203 ; 0.90 \% ; 0.01)$ - now simulate many data sets from the hierarchical model in equation (10) on page 19 and vary A until the $100(1-\eta) \%$ posterior intervals for θ include the right answer about $100(1-\eta) \%$ of the time for a broad range of η values.
- Even when A has been correctly calibrated, when the number N of C groups being combined is small it doesn't take much between-group heterogeneity for the model to tell You that You have more uncertainty about θ with 2 control groups than with 1.

Between-C-Groups Heterogeneity (continued)

group	y			mu		theta		
	n	mean	sd	mean	sd	mean		positive
T	12234293	9.286	129.7	9.286	0.03704			
C1	12231500	9.203	147.8	9.203	0.03263	(here	sigma $=$	0.01)
C2	12232367	9.204	140.1	9.204	0.03196			
C	24463867	---	---	9.204	0.03458	0.008973	0.005538	0.9487
C1	12231500	9.203	147.8	9.209	0.03542			
C2	12232367	9.222	140.1	9.217	0.03426	(here	sigma =	0.015)
C	24463867	---	---	9.213	0.04543	0.007976	0.006391	0.8983

- In the top part of the table above with $\sigma=\mathbf{0 . 0 1}$, borrowing strength decreased the posterior SD from its value with only 1 C group, but in the bottom part of the table - with σ only slightly larger at $\mathbf{0 . 0 1 5}$ - there was enough heterogeneity to drop the tail area from $\mathbf{9 2 . 8 \%}$ (1 C group) to $\mathbf{8 9 . 8 \%}$.

$N=10 C$ Groups, Small Heterogeneity

group $\quad \mathrm{y}$ mean \quad sd mean \quad sd mean \quad theta \quad sd positive

T	12234293	9.286	129.7	9.286	0.03708			
C	12231500	9.203	147.8	9.203	0.04217	0.008904	0.006165	0.9276

C1	12232834	9.193	144.6	9.202	0.01823	(here sigma $=0.01$)		
C2	12233905	9.204	141.4	9.204	0.01807			
C3	12232724	9.191	143.9	9.202	0.01817			
C4	12232184	9.222	139.7	9.205	0.01821			
C5	12231697	9.206	139.3	9.204	0.01803			
C6	12231778	9.191	144.0	9.202	0.01825			
C7	12232383	9.208	130.1	9.204	0.01769			
C8	12232949	9.211	138.3	9.204	0.01805			
C9	12233349	9.209	143.0	9.204	0.01808			
C10	12232636	9.197	142.2	9.203	0.01811			
C	122326439	---	---	9.203	0.01391	0.008974	0.004299	0.9817

- Here with $N=10 C$ groups and a small amount of between-C-groups heterogeneity ($\sigma=0.01$), borrowing strength leads to a substantial sharpening of the T versus C comparison (the problem of setting A disappears, because the posterior for σ is now quite concentrated) (NB total sample size is now $\mathbf{1 3 5}$ million).

$N=10 C$ Groups, Large Heterogeneity

group				mu		theta		
	n	mean	sd	mean	sd	mean		positive
T	12234293	9.286	129.7	9.286	0.03708			
C	12231500	9.203	147.8	9.203	0.04217	0.008904	0.006165	0.9276
C1	12232834	9.082	144.6	9.094	0.03996			
C2	12233905	9.211	141.4	9.210	0.03867			
C3	12232724	9.048	143.9	9.063	0.03984			
C4	12232184	9.437*	139.7	9.416	0.03981			
C5	12231697	9.235	139.3	9.232	0.03818			
C6	12231778	9.050	144.0	9.065	0.03996			
C7	12232383	9.260	130.1	9.255	0.03592	(here	sigma =	0.125)
C8	12232949	9.300*	138.3	9.291	0.03818			
C9	12233349	9.274	143.0	9.267	0.03911			
C10	12232636	9.133	142.2	9.140	0.03888			
C	122326439	---	---	9.203	0.04762	0.009052	0.006589	0.9195

- With $N=10$ it's possible to "go backwards" in apparent information about θ because of large heterogeneity ($\sigma=0.125$ above), but only by making the heterogeneity so large that the exchangeability judgment is questionable (the $2 C$ groups marked * actually had means that were larger than the T mean).

Conclusions in Part II

- With large sample sizes it's straightforward to use hierarchical random-effects Gaussian models - as good approximations to a full BNP analysis - in combining C groups to improve accuracy in estimating T effects, but
- When the number N of C groups to be combined is small, the results are extremely sensitive to Your prior on the between- C-groups SD σ, and it doesn't take much heterogeneity among the C means for the model to tell You that You know less about θ than when there was only $1 C$ group, and
- With a larger N there's less sensitivity to the prior for σ, and borrowing strength will generally succeed in sharpening the comparison unless the heterogeneity is so large as to make the exchangeability judgment that led to the C-group combining questionable.

An Example, to Fix Ideas

Case Study 1. (Krnjajić, Kottas, Draper 2008): In-home geriatric assessment (IHGA). In an experiment conducted in the 1980s (Hendriksen et al., 1984), 572 elderly people, representative of $\mathcal{P}=$ \{all non-institutionalized elderly people in Denmark\}, were randomized, 287 to a control (C) group (who received standard health care) and 285 to a treatment (T) group (who received standard care plus IHGA: a kind of preventive medicine in which each person's medical and social needs were assessed and acted upon individually).

One important outcome was the number of hospitalizations during the two-year life of the study:

Number of Hospitalizations

Group	0	1	2	3	4	5	6	7	n	Mean	SD
Control	138	77	46	12	8	4	0	2	$n_{C}=287$	0.944	1.239
Treatment	147	83	37	13	3	1	1	0	$n_{T}=285$	0.768	1.008

Let μ_{C} and μ_{T} be the mean hospitalization rates (per two years) in \mathcal{P} under the C and T conditions, respectively.

Here are four statistical questions that arose from this study:

Bayesian Qual/Quant Inference

Recall from our earlier discussion that if I judge binary (y_{1}, \ldots, y_{n}) to be part of infinitely exchangeable sequence, to be coherent my joint predictive distribution $p\left(y_{1}, \ldots, y_{n}\right)$ must have simple hierarchical form

$$
\begin{aligned}
\theta & \stackrel{p(\theta)}{\sim} \\
\left(y_{i} \mid \theta\right) & \stackrel{\text { IID }}{\sim}
\end{aligned}
$$

where $\theta=P\left(y_{i}=1\right)=$ limiting value of mean of y_{i} in infinite sequence.

Writing $s=\left(s_{1}, s_{2}\right)$ where s_{1} and s_{2} are the numbers of $0 \mathbf{s}$ and 1s, respectively in $\left(y_{1}, \ldots, y_{n}\right)$, this is equivalent to the model

$$
\begin{align*}
\theta_{2} & \sim p\left(\theta_{2}\right) \tag{1}\\
\left(s_{2} \mid \theta_{2}\right) & \sim \operatorname{Binomial}\left(n, \theta_{2}\right)
\end{align*}
$$

where (in a slight change of notation) $\theta_{2}=P\left(y_{i}=1\right)$; i.e., in this simplest case the form of the likelihood function (Binomial $\left(n, \theta_{2}\right)$) is determined by coherence.

The likelihood function for θ_{2} in this model is

$$
\begin{equation*}
l\left(\theta_{2} \mid y\right)=c \theta_{2}^{s_{2}}\left(1-\theta_{2}\right)^{n-s_{2}}=c \theta_{1}^{s_{1}} \theta_{2}^{s_{2}} \tag{2}
\end{equation*}
$$

from which it's evident that the conjugate prior for the Bernoulli/Binomial likelihood (the choice of prior having the property that the posterior for θ_{2} has the same mathematical form as the prior) is the family of $\operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)$ densities

$$
\begin{align*}
p\left(\theta_{2}\right)= & c \theta_{2}^{\alpha_{2}-1}\left(1-\theta_{2}\right)^{\alpha_{1}-1}=c \theta_{1}^{\alpha_{1}-1} \theta_{2}^{\alpha_{2}-1} \tag{3}\\
& \text { for some } \alpha_{1}>0, \alpha_{2}>0
\end{align*}
$$

Bayesian Qual/Quant Inference

With this prior the conjugate updating rule is evidently
$\left\{\begin{array}{c}\theta_{2} \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right) \\ \left(s_{2} \mid \theta_{2}\right) \sim \operatorname{Binomial}\left(n, \theta_{2}\right)\end{array}\right\} \rightarrow\left(\theta_{2} \mid y\right) \sim \operatorname{Beta}\left(\alpha_{1}+s_{1}, \alpha_{2}+s_{2}\right)$,
where $s_{1}\left(s_{2}\right)$ is the number of $\mathbf{0 s}$ (1s) in the data set $y=\left(y_{1}, \ldots, y_{n}\right)$.

Moreover, given that the likelihood represents a (sample) data set with $s_{1} 0 \mathrm{~s}$ and $s_{2} 1 \mathrm{~s}$ and a data sample size of $n=\left(s_{1}+s_{2}\right)$, it's clear that
(a) the $\boldsymbol{B e t a}\left(\alpha_{1}, \alpha_{2}\right)$ prior acts like a (prior) data set with α_{1} Os and $\alpha_{2} 1 \mathrm{~s}$ and a prior sample size of $\left(\alpha_{1}+\alpha_{2}\right)$, and

(b) to achieve a relatively diffuse

(low-information-content) prior for θ_{2} (if that's what context suggests I should aim for) I should try to specify α_{1} and α_{2} not far from 0 .

Easy generalization of all of this: suppose the y_{i} take on $l \geq 2$ distinct values $v=\left(v_{1}, \ldots, v_{l}\right)$, and let $s=\left(s_{1}, \ldots, s_{l}\right)$ be the vector of counts ($s_{1}=\#\left(y_{i}=v_{1}\right)$ and so on).

If I judge the y_{i} to be part of an infinitely exchangeable sequence, then to be coherent my joint predictive distribution $p\left(y_{1}, \ldots, y_{n}\right)$ must have the hierarchical form

$$
\begin{align*}
\theta & \sim p(\theta) \tag{5}\\
(s \mid \theta) & \sim \operatorname{Multinomial}(n, \theta)
\end{align*}
$$

where $\theta=\left(\theta_{1}, \ldots, \theta_{l}\right)$ and θ_{j} is the limiting relative frequency of v_{j} values in the infinite sequence.

Bayesian Qual/Quant Inference

The likelinood for (vector) θ in this case has the form

$$
\begin{equation*}
l(\theta \mid y)=c \prod_{j=1}^{l} \theta_{j}^{s_{j}} \tag{6}
\end{equation*}
$$

from which it's evident that the conjugate prior for the Multinomial likelihood is of the form

$$
\begin{equation*}
p(\theta)=c \prod_{j=1}^{l} \theta_{j}^{\alpha_{j}-1} \tag{7}
\end{equation*}
$$

for some $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ with $\alpha_{j}>0$ for $j=1, \ldots, l$; this is the Dirichlet (α) distribution, a multivariate generalization of the Beta family.

Here the conjugate updating rule is
$\left\{\begin{array}{c}\theta \sim \operatorname{Dirichlet}(\alpha) \\ (s \mid \theta) \sim \operatorname{Multinomial}(n, \theta)\end{array}\right\} \rightarrow(\theta \mid y) \sim \operatorname{Dirichlet}(\alpha+s)$,
where $s=\left(s_{1}, \ldots, s_{l}\right)$ and s_{j} is the number of v_{j} values ($j=1, \ldots, l$) in the data set $y=\left(y_{1}, \ldots, y_{n}\right)$.

Furthermore, by direct analogy with the $l=2$ case,
(a) the Dirichlet (α) prior acts like a (prior) data set with $\alpha_{j} v_{j}$ values ($j=1, \ldots, l$) and a prior sample size of

$$
\sum_{j=1}^{l} \alpha_{j}, \text { and }
$$

(b) to achieve a relatively diffuse
(low-information-content) prior for θ (if that's what context suggests I should aim for) I should try to choose all of the α_{j} not far from 0 .

Bayesian Qual/Quant Inference

To summarize:
(A) if the data vector $y=\left(y_{1}, \ldots, y_{n}\right)$ takes on l distinct values $v=\left(v_{1}, \ldots, v_{l}\right)$ (real numbers or not) and I judge (my uncertainty about) the infinite sequence (y_{1}, y_{2}, \ldots) to be exchangeable, then (by a representation theorem of de Finetti) coherence compels me (i) to think about the quantities $\theta=\left(\theta_{1}, \ldots, \theta_{l}\right)$, where θ_{j} is the limiting relative frequency of the v_{j} values in the infinite sequence, and (ii) to adopt the Multinomial model

$$
\begin{align*}
\theta & \sim p(\theta) \tag{9}\\
p\left(y_{i} \mid \theta\right) & =c \prod_{j=1}^{l} \theta_{j}^{s_{j}},
\end{align*}
$$

where s_{j} is the number of y_{i} values equal to v_{j};
(B) if context suggests a diffuse prior for θ a convenient (conjugate) choice is Dirichlet (α) with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ and all of the α_{j} positive but close to $\mathbf{0}$; and
(C) with a Dirichlet (α) prior for θ the posterior is Dirichlet $\left(\alpha^{\prime}\right)$, where $s=\left(s_{1}, \ldots, s_{l}\right)$ and $\alpha^{\prime}=(\alpha+s)$.

Note, remarkably, that the v_{j} values themselves make no appearance in the model; this modeling approach is natural with categorical outcomes but can also be used when the v_{j} are real numbers.

For example, for real-valued y_{i}, if (as in the IHGA case study in Part 1) interest focuses on the (underlying population) mean in the infinite sequence (y_{1}, y_{2}, \ldots), this is $\mu_{y}=\sum_{j=1}^{l} \theta_{j} v_{j}$, which is just a linear function of the θ_{j} with known coefficients v_{j}.

Bayesian Qual/Quant Inference

This fact makes it possible to draw an analogy with the distribution-free methods that are at the heart of frequentist non-parametric inference: when your outcome variable takes on a finite number of real values v_{j}, exchangeability compels a Multinomial likelihood on the underlying frequencies with which the v_{j} occur; you are not required to build a parametric model (e.g., normal, lognormal, ...) on the y_{i} values themselves.

In this sense, therefore, model (14)—particularly with the conjugate Dirichlet prior-can serve as a kind of low-technology Bayesian non-parametric modeling: this is the basis of the Bayesian bootstrap (Rubin 1981).

Moreover, if you're in a hurry and you're already familiar with WinBUGS you can readily carry out inference about quantities like μ_{y} above in that environment, but there's no need to do MCMC here: ordinary Monte Carlo (MC) sampling from the Dirichlet $\left(\alpha^{\prime}\right)$ posterior distribution is perfectly straightforward, e.g., in R, based on the following fact:

To generate a random draw $\theta=\left(\theta_{1}, \ldots, \theta_{l}\right)$ from the
Dirichlet $\left(\alpha^{\prime}\right)$ distribution, with $\alpha^{\prime}=\left(\alpha_{1}^{\prime}, \ldots, \alpha_{l}^{\prime}\right)$,
independently draw

$$
\begin{equation*}
g_{j} \stackrel{\text { indep }}{\sim} \Gamma\left(\alpha_{j}^{\prime}, \beta\right), \quad j=1, \ldots, l \tag{10}
\end{equation*}
$$

(where $\Gamma(a, b)$ is the Gamma distribution with parameters a and b) and compute

$$
\begin{equation*}
\theta_{j}=\frac{g_{j}}{\sum_{m=1}^{l} g_{j}} \tag{11}
\end{equation*}
$$

Any $\beta>0$ will do in this calculation; $\beta=1$ is a good choice that leads to fast random number generation.

Bayesian Qual/Quant Inference

The downloadable version of R doesn't have a built-in function for making Dirichlet draws, but it's easy to write one:

```
rdirichlet = function( n.sim, alpha ) {
```

 l = length(alpha)
 theta \(=\) matrix (0, n.sim, l)
 for (j in 1:1) \{
 theta[, j] = rgamma(n.sim, alpha[j], 1)
 \}
 theta \(=\) theta \(/\) apply (theta, 1, sum \()\)
 return (theta)
 \}

The Dirichlet (α) distribution has the following moments: if $\theta \sim$ Dirichlet (α) then

$$
E\left(\theta_{j}\right)=\frac{\alpha_{j}}{\alpha_{0}}, V\left(\theta_{j}\right)=\frac{\alpha_{j}\left(\alpha_{0}-\alpha_{j}\right)}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)}, C\left(\theta_{j}, \theta_{j^{\prime}}\right)=-\frac{\alpha_{j} \alpha_{j^{\prime}}}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)},
$$

where $\alpha_{0}=\sum_{j=1}^{l} \alpha_{j}$ (note the negative correlation between components of θ).

This can be used to test the function above:

Bayesian Qual/Quant Inference

```
> alpha = c( 5.0, 1.0, 2.0 )
> alpha.0 = sum( alpha )
> test = rdirichlet( 100000, alpha ) # 15 seconds at 550 Unix MHz
> apply( test, 2, mean )
[1] 0.6258544 0.1247550 0.2493905
> alpha / alpha.0
[1] 0.625 0.125 0.250
> apply( test, 2, var )
[1] 0.02603293 0.01216358 0.02071587
> alpha * ( alpha.0 - alpha ) / ( alpha.0^2 * ( alpha.0 + 1 ) )
[1] 0.02604167 0.01215278 0.02083333
> cov( test )
\begin{tabular}{rrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 0.026032929 & -0.008740319 & -0.017292610 \\
{\([2]\),} & -0.008740319 & 0.012163577 & -0.003423259 \\
{\([3]\),} & -0.017292610 & -0.003423259 & 0.020715869
\end{tabular}
> - outer( alpha, alpha, "*" ) / ( alpha.0^2 * ( alpha.0 + 1 ) )
    [,1] [,2] [,3]
[1,] -0.043402778 -0.008680556 -0.017361111
[2,] -0.008680556 -0.001736111 -0.003472222 # ignore diagonals
[3,] -0.017361111 -0.003472222 -0.006944444
```


Bayesian Qual/Quant Inference

Example: re-analysis of IHGA data from Part 1; recall policy and clinical interest focused on $\eta=\frac{\mu_{E}}{\mu_{C}}$.

	Number of Hospitalizations										
Group	0	1	2	3	4	5	6	7	n	Mean	SD
Control	138	77	46	12	8	4	0	2	287	0.944	1.24
Experimental	147	83	37	13	3	1	1	0	285	0.768	1.01

In this two-independent-samples setting I can apply de Finetti's representation theorem twice, in parallel, on the C and E data.

I don't know much about the underlying frequencies of $0,1, \ldots, 7$ hospitalizations under C and E external to the data, so I'll use a Dirichlet $(\epsilon, \ldots, \epsilon)$ prior for both θ_{C} and θ_{E} with $\epsilon=0.001$, leading to a Dirichlet $(138.001, \ldots, 2.001)$
posterior for θ_{C} and a Dirichlet(147.001,..., 0.001) posterior for θ_{E} (other small positive choices of ϵ yield similar results).

```
> alpha.C = c( 138.001, 77.001, 46.001, 12.001, 8.001, 4.001, 0.001, 2.001 )
> alpha.E = c( 147.001, 83.001, 37.001, 13.001, 3.001, 1.001, 1.001, 0.001 )
```

> theta.C = rdirichlet(100000, alpha.C) \# 17 sec at 550 Unix MHz
> theta.E = rdirichlet(100000, alpha.E) \# also 17 sec
> print(post.mean.theta.C = apply(theta.C, 2, mean))
[1] 4.808015e-01 2.683458e-01 1.603179e-01 4.176976e-02 2.784911e-02
[6] 1.395287e-02 3.180905e-06 6.959859e-03
> print(post.SD.theta.C <- apply(theta.C, 2, sd))
[1] 0.02941429630 .02610012590 .02165526610 .01179254650 .0096747630
[6] 0.00691215070 .00010172030 .0048757485

Bayesian Qual/Quant Inference

> print(post.mean.theta.E <- apply(theta.E, 2, mean))
[1] $5.156872 \mathrm{e}-01 \quad 2.913022 \mathrm{e}-01 \quad 1.298337 \mathrm{e}-01 \quad 4.560130 \mathrm{e}-02 \quad 1.054681 \mathrm{e}-02$
[6] $3.518699 \mathrm{e}-033.506762 \mathrm{e}-033.356346 \mathrm{e}-06$
> print(post.SD.theta.E <- apply(theta.E, 2, sd))
[1] 0.0295930470 .0269156440 .0198592130 .0123022520 .006027157
[6] 0.0035015680 .0034878240 .000111565
$>$ mean.effect.C <- theta.C $\% * \%$ ($0: 7$)
$>$ mean.effect.E <- theta.E $\% * \%$ ($0: 7$)
> mult.effect <- mean.effect.E / effect.C
> print(post.mean.mult.effect <- mean(mult.effect))
[1] 0.8189195
> print (post. SD.mult.effect <- sd (mult.effect))
[1] 0.08998323
$>$ quantile(mult.effect, probs $=c(0.0,0.025,0.5,0.975,1.0)$)

0%	2.5%	50%	97.5%	100%
0.5037150	0.6571343	0.8138080	1.0093222	1.3868332

> postscript("mult.effect.ps")
> plot (density (mult.effect, $n=2048$), type = 'l', cex.lab = 1.25, xlab = 'Multiplicative Treatment Effect', cex.axis = 1.25, main = 'Posterior Distribution for Multiplicative Treatment Effect', cex.main $=1.25$)
> dev.off()

Bayesian Qual/Quant Inference

In this example the low-tech BNP, Dirichlet-Multinomial, exchangeability-plus-diffuse-prior-information model has reproduced the parametric REPR results almost exactly and without a complicated search through model space for a "good" model.

NB This approach is an application of the Bayesian bootstrap (Rubin 1981), which (for complete validity) includes the assumption that the observed y_{i} values form a complete set of \{all possible values the outcome y could take on $\}$.

