AMS 206: Classical and Bayesian Inference

David Draper

Department of Applied Mathematics and Statistics University of California, Santa Cruz

> draper@ucsc.edu www.ams.ucsc.edu/~draper

LECTURE NOTES (PART 1)

An Example, to Fix Ideas

Case Study 1. (Krnjajić, Kottas, Draper 2008): In-home geriatric assessment (IHGA). In an experiment conducted in the 1980s (Hendriksen et al., 1984), 572 elderly people, representative of $\mathcal{P} =$ {all non-institutionalized elderly people in Denmark}, were randomized, 287 to a control (*C*) group (who received standard health care) and 285 to a treatment (*T*) group (who received standard care plus IHGA: a kind of preventive medicine in which each person's medical and social needs were assessed and acted upon individually).

One **important outcome** was the **number of hospitalizations** during the **two-year** life of the study:

N I CII 11 II II

	Num	der of	Hospita	alizations			
Group	0	1		т	n	Mean	SD
Control	<i>n</i> _{C0}	n_{C1}		n _{Cm}	$n_{C} = 287$	ӯс	s _C
Treatment	n_{T0}	n_{T1}		n _{Tm}	$n_T = 285$	Īγ	s _T

Let μ_C and μ_T be the **mean hospitalization rates** (per two years) in \mathcal{P} under the *C* and *T* **conditions**, respectively.

Here are **four statistical questions** that **arose** from **this study**:

The Four Principal Statistical Activities

 Q_1 : Was the mean number of hospitalizations per two years in the IHGA group different from that in control by an amount that was large in practical terms? $\left[\frac{\text{description}}{V_{c}} \right]$

Q₂: Did **IHGA (causally) change** the **mean number of** hospitalizations per two years by an amount that was large in statistical terms? [inference about $\left(\frac{\mu_T - \mu_C}{\mu_C}\right)$]

 Q_3 : On the **basis** of **this study**, how **accurately** can You **predict** the total decrease in hospitalizations over a period of N years if IHGA were implemented throughout Denmark? [prediction]

 Q_4 : On the basis of this study, is the decision to implement IHGA throughout Denmark optimal from a cost-benefit point of view? [decision-making]

These **questions encompass** almost all of the **discipline** of **statistics**: describing a data set D, generalizing outward inferentially from D, predicting new data D^* , and helping people make decisions in the presence of uncertainty (I include sampling/experimental design under decision-making; omitted: data wrangling, ...).

An Informal Axiomatization of Statistics

1 (definition) Statistics is the study of uncertainty: how to measure it well, and how to make good choices in the face of it.

3 (axiom) (Your uncertainty about) "Something of interest to You" can always be expressed in terms of propositions: true/false statements A, B, ...

Examples: You may be uncertain about the truth status of

• A = (Donald Trump will be re-elected U.S. President in 2020), or

• B = (the **in-hospital mortality rate** for patients at **hospital** H admitted in **calendar 2010** with a principal diagnosis of **heart attack** was **between 5% and 25%**).

4 (implication) It follows from 1-3 that statistics concerns Your information (NOT Your beliefs) about A, B, ...

Axiomatization (continued)

5 (axiom) But Your information cannot be assessed in a vacuum: all such assessments must be made relative to (conditional on) Your background assumptions and judgments about how the world works vis à vis A, B, \ldots .

6 (axiom) These assumptions and judgments, which are themselves a form of information, can always be expressed in a finite set $\mathcal{B} = \{B_1, \dots, B_b\}$ of propositions (examples below).

7 (definition) Call the "something of interest to You" θ ; in applications θ is often a vector (or matrix, or array) of real numbers, but in principle it could be almost anything (a function, an image of the surface of Mars, a phylogenetic tree, ...).

8 (axiom) There will typically be an information source (data set) D that You judge to be relevant to decreasing Your uncertainty about θ ; in applications D is often again a vector (or matrix, or array) of real numbers, but in principle it too could be almost anything (a movie, the words in a book, ...).

Axiomatization (continued)

Examples of \mathcal{B} :

- If θ is the mean survival time for a specified group of patients (who are alive now), then \mathcal{B} includes the proposition ($\theta \ge 0$).
 - If D is the result of an **experiment** E, then B might include the **proposition** (Patients were **randomized** into one of two groups, **treatment** (new drug) or control (current best drug)).

9 (implication) The presence of *D* creates a dichotomy:

• Your information about θ {internal, external} to *D*.

(People often talk about a different dichotomy: Your information about θ {before, after} D arrives (prior, posterior), but temporal considerations are actually irrelevant.)

10 (implication) It follows from 1-9 that statistics concerns itself principally with five things (omitted: description, data wrangling, ...):

(1) Quantifying Your information about θ internal to D (given \mathcal{B}), and doing so well (this term is not yet defined);

(2) Quantifying Your information about θ external to D (given \mathcal{B}), and doing so well;

(3) Combining these two information sources (and doing so well) to create a summary of Your uncertainty about θ (given \mathcal{B}) that includes all available information You judge to be relevant (this is inference);

and using all Your information about θ (given \mathcal{B}) to make

(4) **Predictions** about **future** data values D^* and

(5) **Decisions** about how to **act sensibly**, even though **Your information** about θ may be **incomplete**.

Foundational question: How should these tasks be accomplished?

This question has been addressed by **Bruno de Finetti**, in work he did from the 1920s through the 1970s, and by the American physicists **Richard T. Cox** (1946) and **Edwin T. Jaynes** (2002).

The Cox–Jaynes **Theorem** — recently rigorized and extended by Terenin and Draper (2015) — says that

The Big Picture (continued)

- If You're prepared to uniquely specify two probability distributions

 p(θ | B), encoding Your information about θ external to D, and
 p(D | θ B), capturing Your information about θ internal to D —
 then
 - **optimal inference** about θ is based on the distribution

$$p(\theta \mid D \mathcal{B}) \propto p(\theta \mid \mathcal{B}) p(D \mid \theta \mathcal{B})$$
(1)

(here optimal = {all relevant information is used appropriately, and no other "information" is inadvertently smuggled in}), and

• **optimal prediction** of new data *D*^{*} is based on the distribution

$$p(D^* | D\mathcal{B}) = \int_{\Theta} p(D^* | \theta D\mathcal{B}) p(\theta | D\mathcal{B}) d\theta, \qquad (2)$$

where Θ is the set of possible values of θ ;

Optimal Model Specification

 and if You're further prepared to uniquely specify two more ingredients — Your action space a ∈ (A | B) and Your utility function U(a, θ | B) — then optimal decision-making is attained by maximizing expected utility:

$$a^{*} = \underset{a \in (\mathcal{A} \mid \mathcal{B})}{\operatorname{argmax}} \int_{\Theta} U(a, \theta \mid \mathcal{B}) \, p(\theta \mid \mathcal{D} \, \mathcal{B}) \, d\theta \,. \tag{3}$$

- Let's agree to call M = {p(θ | B), p(D | θB)} Your model for Your uncertainty about θ and D*, and M_d = {p(θ | B), p(D | θB), (A | B), U(a, θ | B)} Your model for Your decision uncertainty.
- The two main practical challenges in using this Theorem are
 - (technical) **Integrals** arising in **computing** the inferential and predictive distributions and the expected utility may be difficult to approximate accurately (and the action space may be difficult to **search** well), and
 - (substantive) The mapping from the problem P = (Q, C) Q = questions, C = context — to M = {p(θ | B), p(D | θB)} and M_d = {p(θ | B), p(D | θB), (A | B), U(a, θ | B)} is rarely unique, giving rise to model uncertainty.

Data-Science Example: A/B Testing

- **Definition:** In model specification, **optimal** = {conditioning only on propositions rendered true by the **context** of the problem and the design of the data-gathering process, while at the same time ensuring that the set of conditioning propositions includes **all relevant problem context**}.
- **Q:** Is optimal model specification **possible**?
- A: Yes, sometimes; for instance, Bayesian non-parametric modeling is an important approach to model specification optimality.
- **Case Study 2:** *A/B* testing (randomized controlled experiments) in data science.
 - eCommerce company X interacts with users through its web site; the company is constantly interested in improving its web experience, so (without telling the users) it randomly assigns them to treatment (A: a new variation on (e.g.) how information is presented) or control (B: the current best version of the web site) groups.

A/B Testing

- Let *P* be the population of company X users at time (now + Δ), in which Δ is fairly small (e.g., several months).
- In a typical A/B test, (n^C + n^T) users are sampled randomly from a proxy for P the population of company X users at time now with n^C of these users assigned at random to C and n^T to T.
- The experimental users are **monitored** for k weeks (typically $2 \le k \le 6$), and a summary $y \in \mathbb{R}$ of their use of the web site (aggregated over the k weeks) is chosen as the **principal outcome variable**; often y is either **monetary** or measures **user satisfaction**; typically $y \ge 0$, which I assume in what follows.
- Let y_i^C be the **outcome value** for user *i* in *C*, and let y^C be the vector (of length n^C) of all *C* values; define y_j^T and y^T (of length n^T) analogously; Your **total data set** is then $D = (y^C, y^T)$.
- Before the data set arrives, Your uncertainty about the y_i^C and y_j^T values is conditionally exchangeable given the experimental group indicators I = (1 if T, 0 if C).

Bayesian Non-Parametric Modeling

• Therefore, by de Finetti's most important Representation Theorem, Your predictive uncertainty about *D* is expressible hierarchically as

$$\begin{array}{c|c} (F^{C} \mid \mathcal{B}) & \sim & p(F^{C} \mid \mathcal{B}) \\ (y_{i}^{C} \mid F^{C} \mathcal{B}) & \stackrel{IID}{\sim} & F^{C} \end{array} & \begin{pmatrix} (F^{T} \mid \mathcal{B}) & \sim & p(F^{T} \mid \mathcal{B}) \\ (y_{j}^{T} \mid F^{T} \mathcal{B}) & \stackrel{IID}{\sim} & F^{T} \end{array}$$
(4)

• Here F^{C} is the **empirical CDF** of the *y* values You would see in the population \mathcal{P} to which You're interested in **generalizing** inferentially

if all users in \mathcal{P} were to receive the *C* version of the web experience, and $F^{\mathcal{T}}$ is the analogous empirical CDF if instead those same users were to **counterfactually** receive the \mathcal{T} version.

• Assume that the means $\mu^{C} = \int y \, dF^{C}(y)$ and $\mu^{T} = \int y \, dF^{T}(y)$ exist and are finite, and define

$$\theta \triangleq \frac{\mu^{T} - \mu^{C}}{\mu^{C}}; \qquad (5)$$

in eCommerce this is referred to as the lift caused by the treatment.

Optimal Bayesian Model Specification

$$\begin{array}{c|c} (F^{C} \mid \mathcal{B}) & \sim & p(F^{C} \mid \mathcal{B}) \\ (y_{i}^{C} \mid F^{C} \mid \mathcal{B}) & \stackrel{IID}{\sim} & F^{C} \end{array} \quad \left| \begin{array}{c} (F^{T} \mid \mathcal{B}) & \sim & p(F^{T} \mid \mathcal{B}) \\ (y_{j}^{T} \mid F^{T} \mid \mathcal{B}) & \stackrel{IID}{\sim} & F^{T} \end{array} \right|$$

- I claim that this is an instance of **optimal Bayesian model specification**: this **Bayesian non-parametric (BNP) model** arises from **exchangeability** assumptions implied directly by **problem context**.
- I now **instantiate** this model with **Dirichlet process priors** placed directly on the **data scale**:

$$\begin{array}{c|c} (F^{C} \mid \mathcal{B}) & \sim & DP(\alpha^{C}, F_{0}^{C}) \\ (y_{i}^{C} \mid F^{C} \mathcal{B}) & \stackrel{IID}{\sim} & F^{C} \end{array} & \begin{pmatrix} (F^{T} \mid \mathcal{B}) & \sim & DP(\alpha^{T}, F_{0}^{T}) \\ (y_{j}^{T} \mid F^{T} \mathcal{B}) & \stackrel{IID}{\sim} & F^{T} \end{array} \tag{6}$$

• The usual conjugate updating produces the posterior

$$(F^{C} | y^{C} \mathcal{B}) \sim DP\left(\alpha^{C} + n^{C}, \frac{\alpha^{C} F_{0}^{C} + n\hat{F}_{n}^{C}}{\alpha^{C} + n^{C}}\right)$$
(7)

and analogously for F^T , where \hat{F}_n^C is the **empirical CDF** defined by the control group data vector y^C ; these posteriors for F^C and F^T **induce posteriors** for μ^C and μ^T , and thus for θ .

$$(F^{C} | y^{C} B) \sim DP\left(\alpha^{C} + n^{C}, \frac{\alpha^{C} F_{0}^{C} + n^{C} \hat{F}_{n}^{C}}{\alpha^{C} + n^{C}}\right)$$

- How to specify $(\alpha^{C}, F_{0}^{C}, \alpha^{T}, F_{0}^{T})$? In part 2 of the talk I'll describe a **method** for **incorporating** *C* information from other experiments; in eCommerce it's **controversial** to **combine information** across *T* groups; so here I'll present an analysis in which **little information external** to (y^{C}, y^{T}) is available.
- This corresponds to α^{C} and α^{T} values close to 0, and with the large n^{C} and n^{T} values typical in A/B testing and $\alpha^{C} \doteq \alpha^{T} \doteq 0$ it doesn't matter what You take for F_{0}^{C} and F_{0}^{T} ; in the limit as $(\alpha^{C}, \alpha^{T}) \downarrow 0$ You get the posteriors

$$(F^{C} | y^{C} \mathcal{B}) \sim DP\left(n^{C}, \hat{F}_{n}^{C}\right) \quad (F^{T} | y^{T} \mathcal{B}) \sim DP\left(n^{T}, \hat{F}_{n}^{T}\right).$$
(8)

In my view the $DP(n, \hat{F}_n)$ posterior should get far more use in applied Bayesian work than it now does: it arises directly from problem context in many settings, and (next slide) is readily computable.

Fast DP Posterior Simulation at Large Scale

$$(F^{C} | y^{C} \mathcal{B}) \sim DP\left(n^{C}, \hat{F}_{n}^{C}\right) \quad (F^{T} | y^{T} \mathcal{B}) \sim DP\left(n^{T}, \hat{F}_{n}^{T}\right).$$

- How to **quickly simulate** *F* draws from $DP(n, \hat{F}_n)$ when *n* is large (e.g., $O(10^7)$ or more)? You can of course use **stick-breaking** (Sethuramen 1994), but this is **slow** because the size of the next stick fragment **depends sequentially** on how much of the stick has already been allocated.
- Instead, use the Pólya Urn representation of the DP predictive distribution (Blackwell and MacQueen 1973): having observed y = (y₁,..., y_n) from the model (F | B) ~ DP(α, F₀), (y_i | F B) ^{IID} F, by marginalizing over F You can show that to make a draw from the posterior predictive for y_{n+1} You just sample from Â_n with probability ⁿ/_{α+n} (and from F₀ with probability ^α/_{α+n}); as α ↓ 0 this becomes simply making a random draw from (y₁,..., y_n); and it turns out that, to make an F draw from (F | y B) that stochastically matches what You would get from stick-breaking, You just make n IID draws from (y₁,..., y_n) and form the empirical CDF based on these draws.

The Frequentist Bootstrap in BNP Calculations

- This is precisely the frequentist bootstrap (Efron 1979), which turns out to be about 30 times faster than stick-breaking and is embarrassingly parallelizable to boot (e.g., Alex Terenin tells me that this is ludicrously easy to implement in MapReduce).
- Therefore, to simulate from the posterior for θ in this model: for large M
 - (1) Take *M* independent **bootstrap** samples from y^{C} , calculating the sample means μ_{*}^{C} of each of these bootstrap samples;
 - (2) **Repeat** (1) on y^{T} , obtaining the vector μ_{*}^{T} of length *M*; and

(3) Make the vector calculation $\theta_* = \frac{\mu_*^T - \mu_*^C}{\mu_*^C}$.

- I claim that this is an **essentially optimal Bayesian analysis** (the only assumption not driven by **problem context** was the choice of the **DP prior**, when other BNP priors are available).
- **Examples:** Two experiments at company X, conducted a few years ago; E_1 involved about 24.5 million users, and E_2 about 257,000 users; in both cases the outcome y was monetary, expressed here in Monetary Units (MUs), a monotonic increasing transformation of US\$.

• In both C and T in E_1 , 90.7% of the users had y = 0, but the remaining **non-zero values** ranged up to 162,000.

Numerical Summaries of E_1 and E_2

Descriptive summaries of a monetary outcome y measured in two A/B tests E_1 and E_2 at eCommerce company X; SD = standard deviation.

			N	ΛU		
Experiment	п	% 0	Mean	SD	Skewness	Kurtosis
E ₁ : T	12,234,293	90.7	9.128	129.7	157.6	59,247
<i>E</i> ₁ : <i>C</i>	12,231,500	90.7	9.203	147.8	328.9	266,640
E_2 : T	128,349	70.1	1,080.8	33,095.8	205.9	52,888
<i>E</i> ₂ : <i>C</i>	128,372	70.0	1,016.2	36,484.9	289.1	92,750

- The outcome y in C in E₁ had skewness 329 (Gaussian 0) and kurtosis 267,000 (Gaussian 0); the noise-to-signal ratio (SD/mean) in C in E₂ was 36.
- The estimated lift in E_1 was $\hat{\theta} = \frac{9.128 9.203}{9.203} \doteq -0.8\%$ (i.e., T made things worse); in E_2 , $\hat{\theta} = \frac{1080.8 1016.2}{1016.2} \doteq +6.4\%$ (highly promising), but the between-user variability in the outcome y in E_2 was massive (SDs in C and T on the order of **36,000**).

Sampling from The Posteriors For F^{C} and F^{T}

In E_1 , with n = 12 million in each group, posterior uncertainty about F does not begin to exhibit itself (reading left to right) until about $e^9 \doteq 8,100$ MUs, which corresponds to the logit⁻¹(10) = 99.9995th percentile; but with the mean at stake and violently skewed and kurtotic distributions, extremely high percentiles are precisely the distributional locations of greatest leverage.

What Does The Central Limit Theorem Have To Say?

- $\hat{\theta}$ is driven by the sample means \bar{y}^{C} and \bar{y}^{T} , so with large enough sample sizes the posterior for θ will be close to Gaussian (by the Bayesian CLT), rendering the **bootstrapping unnecessary**, but the skewness and kurtosis values for the outcome y are large; when does the CLT kick in?
- Not-widely-known fact: under IID sampling,

skewness $(\bar{y}_n) = \frac{\text{skewness}(y_1)}{\sqrt{n}}$ and kurtosis $(\bar{y}_n) = \frac{\text{kurtosis}(y_1)}{n}$. (9) $E_1(C)$ skewness(\bar{y}_n) kurtosis(\bar{y}_n) п 328.9 266.640.0 1 10 104.0 26.664.0 100 32.9 2,666.4 1.000 10.4 266.6 10.000 3.3 26.7100.000 1.0 2.7 1,000,000 0.3 0.3 10,000,000 0.1 0.0

Exact and Approximate Posteriors for θ

BNP posterior distributions (solid curves) for the lift θ in E_1 (upper left) and E_2 (upper right), with Gaussian approximations (dotted lines) superimposed; lower left: the θ posteriors from E_1 and E_2 on the same graph, to give a sense of relative information content in the two experiments; lower right: BNP and approximate-Gaussian posteriors for θ in a small subgroup (segment) of E_2 .

eCommerce Conclusions

BNP inferential summaries of lift in the two A/B tests E_1 and E_2 .

		Posterior	for θ (%)	$ P(\theta > 0 y^T y^C \mathcal{B})$				
Experiment	Total <i>n</i>	Mean	SD	BNP	Gaussian			
E_1	24,465,793	-0.818	0.608	0.0894	0.0892			
E_2 full	256,721	+6.365	14.01	0.6955	0.6752			
E_2 segment	23,674	+5.496	34.26	0.5075	0.5637			

The **bottom row** of this table presents the **results** for a **small subgroup** (known in eCommerce as a **segment**) of users in E_2 , identified by a particular set of **covariates**; the combined sample size here is "only" about **24,000**, and the **Gaussian approximation** to $P(\theta > 0 | y^T y^C B)$ is **too high by more than 11%**.

From a **business perspective**, the **treatment intervention** in E_1 was demonstrably a **failure**, with an estimated lift that represents a **loss** of about **0.8%**; the treatment in E_2 was **highly promising** — $\hat{\theta} \doteq +6.4\%$ — but (with an outcome variable this **noisy**) the total sample size of "only" about **257,000** was **insufficient** to demonstrate its effectiveness **convincingly**.

Combining Information Across Similar Control Groups

NB In the **Gaussian approximation**, the posterior for θ is Normal with mean $\hat{\theta} = \frac{\bar{y}^T - \bar{y}^C}{\bar{y}^C}$ and (by **Taylor expansion**)

$$SD(\theta \mid y^{T} y^{C} \mathcal{B}) \doteq \sqrt{\frac{\bar{y}_{T}^{2} s_{C}^{2}}{\bar{y}_{C}^{4} n_{C}} + \frac{s_{T}^{2}}{\bar{y}_{C}^{2} n_{T}}}.$$
 (10)

- Extension: Borrowing strength across similar control groups.
- In practice eCommerce company X runs a number of experiments simultaneously, making it possible to consider a modeling strategy in which T data in experiment E is compared with a combination of {C data from E plus data from similar C groups in other experiments}.
- Suppose therefore that You judge control groups (C_1, \ldots, C_N) exchangeable — not directly poolable, but like random draws from a common *C* reservoir (as with random-effects hierarchical models, in which between-group heterogeneity among the C_i is explicitly acknowledged).

BNP For Combining Information

 An extension of the BNP modeling in part I to accommodate this new borrowing of strength would look like this: for i = 1,..., N and j = 1,..., n_{group},

$$\begin{array}{cccc} (F^{T} \mid \mathcal{B}) & \sim & DP(\alpha^{T}, F_{0}^{T}) \\ (y_{j}^{T} \mid F^{T} \mathcal{B}) & \stackrel{IID}{\sim} & F^{T} \end{array} \begin{array}{cccc} (F_{0}^{C} \mid \mathcal{B}) & \sim & DP(\gamma, G) \\ (F_{0}^{C} \mid F_{0}^{C} \mathcal{B}) & \stackrel{IID}{\sim} & DP(\alpha^{C}, F_{0}^{C}) \\ (y_{i}^{C_{i}} \mid F^{C_{i}} \mathcal{B}) & \stackrel{IID}{\sim} & F^{C_{i}} \end{array}$$
(11)

- The **modeling** in the *C* groups is an example of a **hierarchical Dirichlet process** (Teh, Jordan, Beal and Blei 2005).
- I've not yet **implemented** this model; with the **large sample sizes** in eCommerce, $DP(n, \hat{F}_n)$ will again be **central**, and some version of **frequentist bootstrapping** will again do the calculations **quickly**.
- **Suppose** for the rest of the talk that the **sample sizes** are large enough for the **Gaussian approximation** in part I to hold:

$$(\mu^{T} \mid y^{T} \mathcal{B}) \stackrel{\cdot}{\sim} \mathcal{N}\left[\bar{y}^{T}, \frac{(s^{T})^{2}}{n^{T}}\right] \quad \text{and} \quad (\mu^{C_{i}} \mid y^{C_{i}} \mathcal{B}) \stackrel{\cdot}{\sim} \mathcal{N}\left[\bar{y}^{C_{i}}, \frac{(s^{C_{i}})^{2}}{n^{C_{i}}}\right] .$$
(12)

Approximate BNP With 100 Million Observations

$$(\mu^T \mid y^T \mathcal{B}) \stackrel{\cdot}{\sim} N\left[\bar{y}^T, \frac{(s^T)^2}{n^T}\right] \text{ and } (\mu^{C_i} \mid y^{C_i} \mathcal{B}) \stackrel{\cdot}{\sim} N\left[\bar{y}^{C_i}, \frac{(s^{C_i})^2}{n^{C_i}}\right]$$

With n^T and the $n^{C_i} \doteq 10$ million each and (e.g.) $N \doteq 10$, the above equation represents a fully efficient summary of an approximate BNP analysis of O(100 million) observations.

 Now simply turn the above Gaussian relationships around to induce the likelihood function in a hierarchical Gaussian random-effects model (the sample sizes are so large that the within-groups sample SDs (e.g., s^T) can be regarded as known):

$$\begin{array}{cccc} (\mu^{T} \mid \mathcal{B}) & \propto & 1 \\ (\bar{y}^{T} \mid \mu^{T} \mathcal{B}) & \sim & N \Big[\mu^{T}, \frac{(s^{T})^{2}}{n^{T}} \Big] \end{array} & \left(\begin{array}{cccc} (\sigma \mid \mathcal{B}) & \sim & U(0, A) \\ (\mu^{C} \mid \sigma \mathcal{B}) & \propto & 1 \\ (\mu^{C_{i}} \mid \mu^{C} \sigma \mathcal{B}) & \stackrel{IID}{\sim} & N(\mu^{C}, \sigma^{2}) \\ (\bar{y}^{C_{i}} \mid \mu^{C_{i}} \mathcal{B}) & \sim & N \Big[\mu^{C_{i}}, \frac{(s^{C_{i}})^{2}}{n^{C_{i}}} \Big] \end{array} \right)$$
(13)

 The Uniform(0, A) prior on the between-C-groups SD σ has been shown (e.g., Gelman 2006) to have good calibration properties (choose A just large enough to avoid likelihood truncation).

In Spiegelhalter's Honor

```
{
```

```
eta.C ~ dflat( )
sigma.mu.C ~ dunif( 0.0, A )
mu.T ~ dflat( )
y.bar.T ~ dnorm( mu.T, tau.mu.T )
for ( i in 1:N ) {
  y.bar.C[i] ~ dnorm( mu.C[i], tau.y.bar.C[i])
  mu.C[ i ] ~ dnorm( eta.C, tau.mu.C )
}
tau.mu.C <- 1.0 / ( sigma.mu.C * sigma.mu.C )</pre>
theta <- ( mu.T - eta.C ) / eta.C
theta.positive <- step( theta )</pre>
```

One C Group First

```
list( A = 0.001,
      y.bar.T = 9.286,
      tau.mu.T = 727.28,
      N = 1.
      y.bar.C = c(9.203),
      tau.y.bar.C = c(559.94)
    )
list(eta.C = 9.203,
      sigma.mu.C = 0.0.
      mu.T = 9.286
    )
                                                         theta
                      y
                                      m11
                         sd
                                         sd
                                                            sd positive
group
                 mean
                              mean
                                                 mean
              n
       12234293 9.286 129.7 9.286 0.03708
    Т
       12231500 9.203 147.8 9.203 0.04217 0.008904 0.006165
                                                                 0.9276
    C
```

• Start with one *C* group: simulated data similar to E_1 in part I but with a bigger treatment effect — total sample size 24.5 million, $\bar{y}^T = 9.286, \bar{y}^C = 9.203, \hat{\theta} = +0.9\%$ with posterior SD 0.6%, posterior probability of positive effect 0.93.

			У		mu		theta	
group	n	mean	sd	mean	sd	mean	sd	positive
Т	12234293	9.286	129.7	9.286	0.03704			
C1	12231500	9.203	147.8	9.203	0.03263			
C2	12232367	9.204	140.1	9.204	0.03196			
С	24463867			9.204	0.03458	0.008973	0.005538	0.9487

- Now two *C* groups, chosen to be quite homogeneous (group means 9.203 and 9.204, simulated from $\sigma = 0.01$) with truncation point A = 0.05 in the Uniform prior for σ , the posterior mean for θ is about the same as before (+0.9%) but the posterior SD has dropped from 0.61% to 0.55% (strength is being borrowed), and the posterior probability of a positive effect has risen to 95%.
- However, has A = 0.05 inadvertently truncated the likelihood for σ ?

A = 0.05

A = 0.1: Borrowing Strength Seems to Disappear

			У		mu		theta	
group	n	mean	sd	mean	sd	mean	sd	positive
Т	12234293	9.286	129.7	9.286	0.03704			
C1	12231500	9.203	147.8	9.203	0.03535			
C2	12232367	9.204	140.1	9.204	0.03426			
С	24463867			9.203	0.04563	0.009011	0.006434	0.9231

- With A = 0.1, the posterior SD for θ rises to 0.64%, and the posterior probability of a positive lift (92%) is now smaller than when only one C group was used the borrowing of strength seems to have disappeared.
- Moreover, A = 0.1 still leads to truncation; exploration reveals that truncation doesn't start to become negligible until $A \ge 2.0$ (and remember that the actual value of σ in this simulated data set was 0.01).

You Can Get Anything You Want ...

31/37

Between-C-Groups Heterogeneity

• The right way to set A (I haven't done this yet) is via inferential calibration on the target quantity of interest θ : create a simulation environment identical to the real-world setting ($n^T = 12,234,293$; $n^{C_1} = 12,231,500$; $n^{C_2} = 12,232,367$; $s^T = 0.03704$; $s^{C_1} = 0.03981$; $s^{C_2} = 0.03794$) except that ($\mu^T, \mu^C, \theta, \sigma$) are known to be (9.286; 9.203; 0.90%; 0.01) — now simulate many data sets from the hierarchical model in equation (10) on page 19 and vary A until the $100(1 - \eta)$ % posterior intervals for θ include the right answer about $100(1 - \eta)$ % of the time for a broad range of η values.

Even when A has been correctly calibrated, when the number N of C groups being combined is small it doesn't take much between-group heterogeneity for the model to tell You that You have more uncertainty about θ with 2 control groups than with 1.

Between-C-Groups Heterogeneity (continued)

		У		I	nu	theta			
group	n	mean	sd	mean	sd	mean	sd p	ositive	
Т	12234293	9.286	129.7	9.286	0.03704				
C1	12231500	9.203	147.8	9.203	0.03263	(here sig	gma = 0	.01)	
C2	12232367	9.204	140.1	9.204	0.03196				
С	24463867			9.204	0.03458	0.008973 0.00)5538	0.9487	
C1	12231500	9.203	147.8	9.209	0.03542				
C2	12232367	9.222	140.1	9.217	0.03426	(here sig	gma = O	.015)	
						-			
С	24463867			9.213	0.04543	0.007976 0.00)6391	0.8983	

In the top part of the table above with σ = 0.01, borrowing strength decreased the posterior SD from its value with only 1 C group, but in the bottom part of the table — with σ only slightly larger at 0.015 — there was enough heterogeneity to drop the tail area from 92.8% (1 C group) to 89.8%.

N = 10 C Groups, Small Heterogeneity

		у		r	nu		theta
group	n	mean	sd	mean	sd	mean	sd positive
Т	12234293	9.286	129.7	9.286	0.03708		
С	12231500	9.203	147.8	9.203	0.04217	0.008904	0.006165 0.9276
C1	12232834	9.193	144.6	9.202	0.01823		
C2	12233905	9.204	141.4	9.204	0.01807		
C3	12232724	9.191	143.9	9.202	0.01817		
C4	12232184	9.222	139.7	9.205	0.01821		
C5	12231697	9.206	139.3	9.204	0.01803		
C6	12231778	9.191	144.0	9.202	0.01825		
C7	12232383	9.208	130.1	9.204	0.01769	(here	e sigma = 0.01)
C8	12232949	9.211	138.3	9.204	0.01805		-
C9	12233349	9.209	143.0	9.204	0.01808		
C10	12232636	9.197	142.2	9.203	0.01811		

C 122326439 --- 9.203 0.01391 0.008974 0.004299 0.9817

• Here with N = 10 C groups and a small amount of between– C-groups heterogeneity ($\sigma = 0.01$), borrowing strength leads to a substantial sharpening of the T versus C comparison (the problem of setting A disappears, because the posterior for σ is now quite concentrated) (NB total sample size is now 135 million).

N = 10 C Groups, Large Heterogeneity

		у		r	nu		theta
group	n	mean	sd	mean	sd	mean	sd positive
Т	12234293	9.286	129.7	9.286	0.03708		
С	12231500	9.203	147.8	9.203	0.04217	0.008904	0.006165 0.9276
C1	12232834	9.082	144.6	9.094	0.03996		
C2	12233905	9.211	141.4	9.210	0.03867		
C3	12232724	9.048	143.9	9.063	0.03984		
C4	12232184	9.437*	139.7	9.416	0.03981		
C5	12231697	9.235	139.3	9.232	0.03818		
C6	12231778	9.050	144.0	9.065	0.03996		
C7	12232383	9.260	130.1	9.255	0.03592	(here	sigma = 0.125)
C8	12232949	9.300*	138.3	9.291	0.03818		
C9	12233349	9.274	143.0	9.267	0.03911		
C10	12232636	9.133	142.2	9.140	0.03888		

C 122326439 --- 9.203 0.04762 0.009052 0.006589 0.9195

• With N = 10 it's possible to "go backwards" in apparent information about θ because of large heterogeneity ($\sigma = 0.125$ above), but only by making the heterogeneity so large that the exchangeability judgment is questionable (the 2 *C* groups marked * actually had means that were larger than the *T* mean).

Conclusions in Part II

- With large sample sizes it's straightforward to use hierarchical random-effects Gaussian models as good approximations to a full BNP analysis in combining *C* groups to improve accuracy in estimating *T* effects, but
 - When the number *N* of *C* groups to be combined is **small**, the results are **extremely sensitive** to Your prior on the between-*C*-groups SD σ , and it doesn't take much heterogeneity among the *C* means for the model to tell You that **You know less about** θ **than when there was only 1** *C* **group**, and
 - With a larger *N* there's less sensitivity to the prior for σ , and **borrowing strength** will generally **succeed** in sharpening the comparison unless the **heterogeneity** is so large as to make the **exchangeability judgment** that led to the *C*-group combining **questionable**.

An Example, to Fix Ideas

Case Study 1. (Krnjajić, Kottas, Draper 2008): In-home geriatric assessment (IHGA). In an experiment conducted in the 1980s (Hendriksen et al., 1984), 572 elderly people, representative of $\mathcal{P} =$ {all non-institutionalized elderly people in Denmark}, were randomized, 287 to a control (*C*) group (who received standard health care) and 285 to a treatment (*T*) group (who received standard care plus IHGA: a kind of preventive medicine in which each person's medical and social needs were assessed and acted upon individually).

One **important outcome** was the **number of hospitalizations** during the **two-year** life of the study:

.

		Numl	per of	Hosp	Italiz	zatio	ns				
Group	0	1	2	3	4	5	6	7	n	Mean	SD
Control	138	77	46	12	8	4	0	2	$n_{C} = 287$	0.944	1.239
Treatment	147	83	37	13	3	1	1	0	$n_T = 285$	0.768	1.008

Let μ_C and μ_T be the **mean hospitalization rates** (per two years) in \mathcal{P} under the *C* and *T* **conditions**, respectively.

Here are **four statistical questions** that **arose** from **this study**:

Recall from our earlier discussion that if I judge **binary** (y_1, \ldots, y_n) to be part of **infinitely exchangeable sequence**, to be **coherent** my joint predictive distribution $p(y_1, \ldots, y_n)$ must have simple **hierarchical** form

 $\begin{array}{rcl} \theta & \sim & p(\theta) \\ (y_i|\theta) & \stackrel{\mathrm{IID}}{\sim} & \mathrm{Bernoulli}(\theta), \end{array}$

where $\theta = P(y_i = 1) =$ **limiting value of mean of** y_i in infinite sequence.

Writing $s = (s_1, s_2)$ where s_1 and s_2 are the **numbers of 0s** and 1s, respectively in (y_1, \ldots, y_n) , this is equivalent to the model

$$\begin{array}{rcl} \theta_2 & \sim & p(\theta_2) & (1) \\ (s_2|\theta_2) & \sim & \mathsf{Binomial}(n,\theta_2), \end{array}$$

where (in a slight change of notation) $\theta_2 = P(y_i = 1)$; i.e., in this simplest case the form of the **likelihood function** (Binomial (n, θ_2)) is determined by **coherence**.

The **likelihood function** for θ_2 in this model is

$$l(\theta_2|y) = c \,\theta_2^{s_2} (1 - \theta_2)^{n - s_2} = c \,\theta_1^{s_1} \theta_2^{s_2},\tag{2}$$

from which it's evident that the **conjugate prior** for the **Bernoulli/Binomial likelihood** (the choice of prior having the property that the **posterior** for θ_2 has the same **mathematical form** as the **prior**) is the family of **Beta**(α_1, α_2) densities

$$p(\theta_2) = c \,\theta_2^{\alpha_2 - 1} (1 - \theta_2)^{\alpha_1 - 1} = c \,\theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1}.$$
(3)
for some $\alpha_1 > 0, \alpha_2 > 0.$

With this prior the conjugate updating rule is evidently

 $\left\{ \begin{array}{c} \theta_2 \sim \text{Beta}(\alpha_1, \alpha_2) \\ (s_2|\theta_2) \sim \text{Binomial}(n, \theta_2) \end{array} \right\} \rightarrow (\theta_2|y) \sim \text{Beta}(\alpha_1 + s_1, \alpha_2 + s_2),$ (4)

where s_1 (s_2) is the **number of 0s (1s)** in the data set $y = (y_1, \ldots, y_n)$.

Moreover, given that the **likelihood** represents a (sample) data set with s_1 0s and s_2 1s and a data sample size of $n = (s_1 + s_2)$, it's clear that

(a) the **Beta**(α_1, α_2) prior acts like a (prior) data set with α_1 0s and α_2 1s and a prior sample size of ($\alpha_1 + \alpha_2$), and

(b) to achieve a relatively **diffuse** (low-information-content) prior for θ_2 (if that's what context suggests I should aim for) I should try to specify α_1 and α_2 not far from 0.

Easy generalization of all of this: suppose the y_i take on $l \ge 2$ distinct values $v = (v_1, \ldots, v_l)$, and let $s = (s_1, \ldots, s_l)$ be the vector of counts $(s_1 = #(y_i = v_1) \text{ and so on})$.

If I judge the y_i to be part of an **infinitely exchangeable** sequence, then to be **coherent** my joint predictive distribution $p(y_1, \ldots, y_n)$ must have the **hierarchical** form

$$\begin{array}{ll} \theta & \sim & p(\theta) \\ (s|\theta) & \sim & \text{Multinomial}(n,\theta), \end{array} \tag{5}$$

where $\theta = (\theta_1, \dots, \theta_l)$ and θ_j is the **limiting relative** frequency of v_j values in the infinite sequence.

The likelihood for (vector) θ in this case has the form

$$l(\theta|y) = c \prod_{j=1}^{l} \theta_j^{s_j},$$
(6)

from which it's evident that the **conjugate prior** for the **Multinomial likelihood** is of the form

$$p(\theta) = c \prod_{j=1}^{l} \theta_j^{\alpha_j - 1}, \tag{7}$$

for some $\alpha = (\alpha_1, ..., \alpha_l)$ with $\alpha_j > 0$ for j = 1, ..., l; this is the **Dirichlet**(α) distribution, a **multivariate generalization** of the Beta family.

Here the conjugate updating rule is

 $\left\{ \begin{array}{c} \theta \sim \mathsf{Dirichlet}(\alpha) \\ (s|\theta) \sim \mathsf{Multinomial}(n,\theta) \end{array} \right\} \rightarrow (\theta|y) \sim \mathsf{Dirichlet}(\alpha+s), \ (8)$

where $s = (s_1, \ldots, s_l)$ and s_j is the **number of** v_j values $(j = 1, \ldots, l)$ in the data set $y = (y_1, \ldots, y_n)$.

Furthermore, by **direct analogy** with the l = 2 case,

(a) the **Dirichlet**(α) prior acts like a **(prior) data set** with $\alpha_j v_j$ values (j = 1, ..., l) and a **prior sample size** of $\sum_{j=1}^{l} \alpha_j$, and

(b) to achieve a relatively **diffuse** (low-information-content) prior for θ (if that's what context suggests I should aim for) I should try to choose all of the α_j not far from 0.

To **summarize**:

(A) if the **data vector** $y = (y_1, ..., y_n)$ takes on l **distinct** values $v = (v_1, ..., v_l)$ (**real numbers or not**) and I judge (my uncertainty about) the infinite sequence $(y_1, y_2, ...)$ to be **exchangeable**, then (by a **representation theorem** of de Finetti) **coherence** compels me (i) to **think about** the quantities $\theta = (\theta_1, ..., \theta_l)$, where θ_j is the **limiting relative** frequency of the v_j values in the infinite sequence, and (ii) to **adopt** the Multinomial model

$$\theta \sim p(\theta)$$
(9)
$$p(y_i|\theta) = c \prod_{j=1}^{l} \theta_j^{s_j},$$

where s_j is the **number** of y_i values equal to v_j ;

(B) if context suggests a **diffuse** prior for θ a convenient (**conjugate**) choice is **Dirichlet**(α) with $\alpha = (\alpha_1, \dots, \alpha_l)$ and all of the α_j **positive but close to 0**; and

(C) with a **Dirichlet**(α) prior for θ the **posterior** is **Dirichlet**(α'), where $s = (s_1, \ldots, s_l)$ and $\alpha' = (\alpha + s)$.

Note, remarkably, that the v_j values themselves **make no appearance** in the model; this modeling approach is **natural** with **categorical** outcomes but can also be used when the v_j are **real numbers**.

For example, for real-valued y_i , if (as in the IHGA case study in Part 1) interest focuses on the (underlying population) mean in the infinite sequence $(y_1, y_2, ...)$, this is $\mu_y = \sum_{j=1}^l \theta_j v_j$, which is just a linear function of the θ_j with known coefficients v_j .

This fact makes it possible to draw an **analogy** with the **distribution-free** methods that are at the heart of **frequentist non-parametric** inference: when your **outcome variable** takes on a **finite number** of **real** values v_j , **exchangeability** compels a **Multinomial likelihood** on the **underlying frequencies** with which the v_j occur; you are not required to build a **parametric model** (e.g., normal, lognormal, ...) on the y_i values themselves.

In this sense, therefore, model (14)—particularly with the **conjugate Dirichlet** prior—can serve as a kind of **low-technology Bayesian non-parametric** modeling: this is the basis of the **Bayesian bootstrap** (Rubin 1981).

Moreover, if you're in a hurry and you're already familiar with WinBUGS you can readily carry out inference about quantities like μ_y above in that environment, but there's no need to do MCMC here: ordinary Monte Carlo (MC) sampling from the Dirichlet(α') posterior distribution is perfectly straightforward, e.g., in R, based on the following fact:

To generate a **random draw** $\theta = (\theta_1, \dots, \theta_l)$ from the **Dirichlet**(α') distribution, with $\alpha' = (\alpha'_1, \dots, \alpha'_l)$, **independently draw**

$$g_j \overset{\text{indep}}{\sim} \Gamma(\alpha'_j, \beta), \quad j = 1, \dots, l$$
 (10)

(where $\Gamma(a, b)$ is the **Gamma distribution** with parameters a and b) and compute

$$\theta_j = \frac{g_j}{\sum_{m=1}^l g_j}.$$
(11)

Any $\beta > 0$ will do in this calculation; $\beta = 1$ is a good choice that leads to fast random number generation.

The downloadable version of R doesn't have a built-in function for making Dirichlet draws, but it's easy to write one:

```
rdirichlet = function( n.sim, alpha ) {
    l = length( alpha )
    theta = matrix( 0, n.sim, l )
    for ( j in 1:l ) {
        theta[, j] = rgamma( n.sim, alpha[ j ], 1 )
    }
    theta = theta / apply( theta, 1, sum )
    return( theta )
}
```

The **Dirichlet**(α) distribution has the following **moments**: if $\theta \sim \text{Dirichlet}(\alpha)$ then

$$E(\theta_j) = \frac{\alpha_j}{\alpha_0}, \ V(\theta_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}, \ C(\theta_j, \theta_{j'}) = -\frac{\alpha_j \alpha_{j'}}{\alpha_0^2(\alpha_0 + 1)},$$

where $\alpha_0 = \sum_{j=1}^{l} \alpha_j$ (note the **negative correlation** between components of θ).

This can be used to **test** the function above:

> alpha = c(5.0, 1.0, 2.0) > alpha.0 = sum(alpha) > test = rdirichlet(100000, alpha) # 15 seconds at 550 Unix MHz > apply(test, 2, mean) [1] 0.6258544 0.1247550 0.2493905 > alpha / alpha.0 [1] 0.625 0.125 0.250 > apply(test, 2, var) [1] 0.02603293 0.01216358 0.02071587 > alpha * (alpha.0 - alpha) / (alpha.0^2 * (alpha.0 + 1)) [1] 0.02604167 0.01215278 0.02083333 > cov(test) [.1] [,2] [.3] [1,] 0.026032929 -0.008740319 -0.017292610 [2,] -0.008740319 0.012163577 -0.003423259 [3,] -0.017292610 -0.003423259 0.020715869 > - outer(alpha, alpha, "*") / (alpha.0^2 * (alpha.0 + 1)) [,1] [,2] [.3] [1,] -0.043402778 -0.008680556 -0.017361111 [2,] -0.008680556 -0.001736111 -0.003472222 # ignore diagonals [3,] -0.017361111 -0.003472222 -0.006944444

Example: re-analysis of **IHGA data** from Part 1; recall **policy** and **clinical interest** focused on $\eta = \frac{\mu_E}{\mu_C}$.

	۱ ۱	lumb	er of	Hosp	italiz	zatic	ns				
Group	0	1	2	3	4	5	6	7	n	Mean	SD
Control	138	77	46	12	8	4	0	2	287	0.944	1.24

In this **two-independent-samples** setting I can apply de Finetti's representation theorem **twice**, in parallel, on the Cand E data.

I don't know much about the **underlying frequencies** of 0, 1, ..., 7 hospitalizations under *C* and *E* **external** to the data, so I'll use a **Dirichlet**(ϵ , ..., ϵ) **prior** for both θ_C and θ_E with $\epsilon = 0.001$, leading to a **Dirichlet**(138.001, ..., 2.001) **posterior** for θ_C and a **Dirichlet**(147.001, ..., 0.001) **posterior** for θ_E (other small positive choices of ϵ yield **similar results**).

> theta.C = rdirichlet(100000, alpha.C) # 17 sec at 550 Unix MHz

> theta.E = rdirichlet(100000, alpha.E) # also 17 sec

> print(post.mean.theta.C = apply(theta.C, 2, mean))

[1] 4.808015e-01 2.683458e-01 1.603179e-01 4.176976e-02 2.784911e-02 [6] 1.395287e-02 3.180905e-06 6.959859e-03

> print(post.SD.theta.C <- apply(theta.C, 2, sd))</pre>

[1] 0.0294142963 0.0261001259 0.0216552661 0.0117925465 0.0096747630
[6] 0.0069121507 0.0001017203 0.0048757485

```
> print( post.mean.theta.E <- apply( theta.E, 2, mean ) )</pre>
[1] 5.156872e-01 2.913022e-01 1.298337e-01 4.560130e-02 1.054681e-02
[6] 3.518699e-03 3.506762e-03 3.356346e-06
> print( post.SD.theta.E <- apply( theta.E, 2, sd ) )</pre>
[1] 0.029593047 0.026915644 0.019859213 0.012302252 0.006027157
[6] 0.003501568 0.003487824 0.000111565
> mean.effect.C <- theta.C %*\% ( 0:7 )
> mean.effect.E <- theta.E %*\% ( 0:7 )
> mult.effect <- mean.effect.E / effect.C</pre>
> print( post.mean.mult.effect <- mean( mult.effect ) )</pre>
[1] 0.8189195
> print( post.SD.mult.effect <- sd( mult.effect ) )</pre>
[1] 0.08998323
> quantile( mult.effect, probs = c( 0.0, 0.025, 0.5, 0.975, 1.0 ) )
       0%
               2.5%
                           50%
                                   97.5%
                                               100%
0.5037150 0.6571343 0.8138080 1.0093222 1.3868332
> postscript( "mult.effect.ps" )
> plot( density( mult.effect, n = 2048 ), type = '1', cex.lab = 1.25,
    xlab = 'Multiplicative Treatment Effect', cex.axis = 1.25,
    main = 'Posterior Distribution for Multiplicative Treatment Effect',
    cex.main = 1.25)
> dev.off( )
```


Posterior Distribution for Multiplicative Treatment Effect

In this example the **low-tech BNP**, **Dirichlet-Multinomial**, **exchangeability-plus-diffuse-prior-information** model has **reproduced** the **parametric REPR results** almost exactly and without a **complicated search through model space** for a **"good"** model.

NB This approach is an application of the Bayesian bootstrap (Rubin 1981), which (for complete validity) includes the assumption that the observed y_i values form a complete set of {all possible values the outcome y could take on}.