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Let y = [yi]ni=1 be an n × 1 vector of independent observations on a dependent variable (or

response) from n experimental units. Associated with the yi, is a p× 1 vector of regressors, say xi,

and lead to the linear regression model

y = Xβ + ε, (1)

where X = [xT
i ]ni=1 is the n× p matrix of regressors with i-th row being xT

i and is assumed fixed,

β is the slope vector of regression coefficients and ε = [εi]ni=1 is the vector of random variables

representing “pure error” or measurement error in the dependent variable. For independent obser-

vations, we assume ε ∼ MV N(0, σ2In), viz. that each component εi
iid∼ N(0, σ2). Furthermore, we

will assume that the columns of the matrix X are linearly independent so that the rank of X is p.

1 The NIG conjugate prior family

A popular Bayesian model builds upon the linear regression of y using conjugate priors by specifying

p(β, σ2) = p(β |σ2)p(σ2) = N(µβ, σ2Vβ)× IG(a, b) = NIG(µβ, Vβ, a, b)

=
ba

(2π)p/2|Vβ|1/2Γ(a)

(
1
σ2

)a+p/2+1

× exp
[
− 1

σ2

{
b +

1
2
(β − µβ)T V −1

β (β − µβ)
}]

∝
(

1
σ2

)a+p/2+1

× exp
[
− 1

σ2

{
b +

1
2
(β − µβ)T V −1

β (β − µβ)
}]

, (2)

where Γ(·) represents the Gamma function and the IG(a, b) prior density for σ2 is given by

p(σ2) =
ba

Γ(a)

(
1
σ2

)a+1

exp
(
− b

σ2

)
, σ2 > 0,

where a, b > 0. We call this the Normal-Inverse-Gamma (NIG) prior and denote it as NIG(µβ, Vβ , a, b).

The NIG probability distribution is a joint probability distribution of a vector β and a scalar

σ2. If (β, σ2) ∼ NIG(µ, V, a, b), then an interesting analytic form results from integrating out σ2
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from the joint density:∫
NIG(µ, V, a, b)dσ2 =

ba

(2π)p/2|V |1/2Γ(a)

∫ (
1
σ2

)a+1

exp
{
− 1

σ2

[
b +

1
2
(β − µ)T V −1(β − µ)

]}
dσ2

=
ba

(2π)p/2|V |1/2Γ(a)

∫
exp

{
− 1

σ2

(
b +

1
2
(β − µ)T V −1(β − µ)

)}
dσ2

=
baΓ

(
a + p

2

)
(2π)p/2|V |1/2Γ(a)

[
b +

1
2
(β − µ)T V −1(β − µ)

]−(a+ p
2 )

=
Γ

(
a + p

2

)
πp/2|(2a) b

aV |1/2Γ(a)

[
1 +

(β − µ)T [
b
aV

]−1
(β − µ)

2a

]−( 2a+p
2 )

.

This is a multivariate t density:

MV Stν(µ, Σ) =
Γ

(ν+p
2

)
Γ

(
ν
2

)
πp/2|νΣ|1/2

[
1 +

(β − µ)T Σ−1(β − µ)
ν

]− ν+p
2

, (3)

with ν = 2a and Σ =
(

b
a

)
V .

2 The likelihood

The likelihood for the model is defined, up to proportionality, as the joint probability of observing

the data given the parameters. Since X is fixed, the likelihood is given by

p(y |β, σ2) = N(Xβ, σ2I) =
(

1
2πσ2

)n/2

exp
{
− 1

2σ2
(y−Xβ)T (y−Xβ)

}
. (4)

3 The posterior distribution from the NIG prior

Inference will proceed from the posterior distribution

p(β, σ2 | y) =
p(β, σ2)p(y |β, σ2)

p(y)
,

where p(y) =
∫

p(β, σ2)p(y |β, σ2)dβdσ2 is the marginal distribution of the data. The key to

deriving the joint posterior distribution is the following easily verified multivariate completion of

squares or ellipsoidal rectification identity:

uT Au− 2αTu = (u−A−1α)T A(u−A−1α)−αT A−1α, (5)
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where A is a symmetric positive definite (hence invertible) matrix. An application of this identity

immediately reveals,

1
σ2

[
b +

1
2

{
(β − µβ)T Vβ(β − µβ) + (y−Xβ)T (y−Xβ)

}]
=

1
σ2

[
b∗ +

1
2
(β − µ∗)T V ∗−1(β − µ∗)

]
,

using which we can write the posterior as

p(β, σ2 | y) ∝
(

1
σ2

)a+(n+p)/2+1

× exp
{
− 1

σ2

[
b∗ +

1
2
(β − µ∗)T V ∗−1(β − µ∗)

]}
, (6)

where

µ∗ = (V −1
β + XT X)−1(V −1

β µβ + XTy),

V ∗ = (V −1 + XT X)−1,

a∗ = a + n/2,

b∗ = b +
1
2
[µT

β V −1
β µβ + yTy− µ∗T V ∗−1µ∗].

This posterior distribution is easily identified as a NIG(µ∗, V ∗, a∗, b∗) proving it to be a conjugate

family for the linear regression model.

Note that the marginal posterior distribution of σ2 is immediately seen to be an IG(a∗, b∗)

whose density is given by:

p(σ2 | y) =
b∗a

∗

Γ(a∗)

(
1
σ2

)a∗+1

exp
(
− b∗

σ2

)
. (7)

The marginal posterior distribution of β is obtained by integrating out σ2 from the NIG joint

posterior as follows:

p(β|y) =
∫

p(β, σ2 | y)dσ2 =
∫

NIG(µ∗, V ∗, a∗, b∗)dσ2

∝
∫ (

1
σ2

)a∗+1

exp
{
− 1

σ2

[
b∗ +

1
2
(β − µ∗)T V ∗−1(β − µ∗)

]}
dσ2

∝
[
1 +

(β − µ∗)T V ∗−1(β − µ∗)
2b∗

]−(a∗+p/2)

.

This is a multivariate t density:

MV Stν∗(µ∗, Σ∗) =
Γ

(
ν∗+p

2

)
Γ

(
ν∗

2

)
πp/2|ν∗Σ∗|1/2

[
1 +

(β − µ∗)T Σ∗−1(β − µ∗)
ν∗

]− ν∗+p
2

, (8)

with ν∗ = 2a∗ and Σ∗ =
(

b∗

a∗

)
V ∗.
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4 A useful expression for the NIG scale parameter

Here we will prove:

b∗ = b +
1
2

(
y−Xµβ

)T (
I + XVβXT

)−1
(y−Xµβ) (9)

On account of the expression for b∗ derived in the preceding section, it suffices to prove that

yTy + µT
β V −1µβ − µ∗V ∗−1µ∗ =

(
y−Xµβ

)T (
I + XVβXT

)−1
(y−Xµβ)

Substituting µ∗ = V ∗(V −1µβ + XTy) in the left hand side above we obtain:

yTy + µT
β V −1

β µβ − µ∗V ∗−1µ∗ = yTy + µT
β V −1

β µβ − (V −1
β µβ + XTy)V ∗(V −1

β µβ + XTy)

= yT (I −XV ∗
β XT )y− 2yT XV ∗V −1µβ + µT

β (V −1
β − V −1

β V ∗V −1
β )µ.

(10)

Further development of the proof will employ two tricky identities. The first is the well-known

Sherman-Woodbury-Morrison identity in matrix algebra:

(A + BDC)−1 = A−1 −A−1B
(
D−1 + CA−1B

)−1
CA−1, (11)

where A and D are square matrices that are invertible and B and C are rectangular (square if A

and D have the same dimensions) matrices such that the multiplications are well-defined. This

identity is easily verified by multiplying the right hand side with A + BDC and simplifying to

reduce it to the identity matrix.

Applying (11) twice, once with A = Vβ and D = (XT X)−1 to get the second equality and then

with A = (XT X)−1 and D = Vβ to get the third equality, we have

V −1
β − V −1

β V ∗V −1
β = V −1

β − V −1
β (V −1

β + XXT )−1V −1
β

= [Vβ + (XT X)−1]−1

= XT X −XT X(XT X + V −1)−1XT X

= XT (In −XV ∗XT )X. (12)

The next identity notes that since V ∗(V −1 + XT X) = Ip, we have V ∗V −1 = Ip − V ∗XT X, so that

XV ∗V −1 = X −XV ∗XT X = (In −XV ∗XT )X. (13)
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Substituting (12) and (13) in (10) we obtain

yT (In −XV ∗XT )y− 2yT (In −XV ∗XT )µβ + µT
β (In −XV ∗XT )µβ

= (y−Xµβ)T (In −XV ∗XT )(y−Xµβ)

= (y−Xµβ)T (In + XV XT )−1(y−Xµβ), (14)

where the last step is again a consequence of (11):

(In + XV XT )−1 = In −X(V −1 + XT X)−1XT = In −XV ∗XT .

5 Marginal distributions – the hard way

To obtain the marginal distribution of y, we first compute the distribution p(y |σ2) by integrating

out β and subsequently integrate out σ2 to obtain p(y). To be precise, we use the expression for

b∗ derived in the preceding section, proceeding as below:

p(y |σ2) =
∫

p(y |β, σ2)p(β |σ2)dβ =
∫

N(Xβ, σ2In)×N(µβ, σ2Vβ)dβ

=
1

(2πσ2)
n+p

2 |Vβ |1/2

∫
exp

[
− 1

2σ2

{
(y−Xβ)T (y−Xβ) + (β − µβ)T V −1

β (β − µβ)
}]

dβ

=
1

(2πσ2)
n+p

2 |Vβ |1/2

×
∫

exp
[
− 1

2σ2

{
(y−Xµβ)T (I + XV XT )−1(y−Xµβ) + (β − µ∗)T V ∗−1(β − µ∗)

}]
dβ

=
1

(2πσ2)
n+p

2 |Vβ |1/2
exp

{
− 1

2σ2
(y−Xµβ)T (I + XVβXT )−1(y−Xµβ)

}
×

∫
exp

[
− 1

2σ2

{
(β − µ∗)T V ∗−1(β − µ∗)

}]
dβ

=
1

(2πσ2)
n
2

(
|V ∗|
|Vβ|

)1/2

exp
{
− 1

2σ2
(y−Xµβ)T (I + XVβXT )−1(y−Xµβ)

}
=

1

(2πσ2)
n
2 |I + XVβXT |1/2

exp
{
− 1

2σ2
(y−Xµβ)T (I + XVβXT )−1(y−Xµβ)

}
= N(Xµβ , σ2(I + XVβXT )). (15)

Here we have applied the matrix identity

|A + BDC| = |A||D||D−1 + CA−1B| (16)

5



to obtain

|In + XVβXT | = |Vβ ||V −1
β + XT X| =

(
|Vβ|
|V ∗|

)
.

Now, the marginal distribution of p(y) is obtained by integrating a NIG density as follows:

p(y) =
∫

p(y |σ2)p(σ2)dσ2 =
∫

N(Xµβ, σ2(I + XV XT ))IG(a, b)dσ2

=
∫

NIG(Xµβ , (I + XV XT ), a, b)dσ2 = MV St2a

(
Xµ,

b

a
(I + XV XT )

)
. (17)

Rewriting our result slightly differently reveals another useful property of the NIG density:

p(y) =
∫

p(y |β, σ2)p(β, σ2)dβdσ2

=
∫

N(Xβ, σ2In)×NIG(µβ, Vβ , a, b)dβdσ2 = MV St2a

(
Xµ,

b

a
(I + XV XT )

)
. (18)

Of course, the computation of p(y) could also be carried out in terms of the NIG distribution

parameters more directly as

p(y) =
∫

p(y|β, σ2)p(β, σ2)dβdσ2 =
∫

N(Xβ, σ2In)×NIG(µβ, Vβ, a, b)dβdσ2

=
ba

(2π)p/2|Vβ|1/2Γ(a)

∫ (
1
σ2

)a∗+p/2+1

× exp
{
− 1

σ2

[
b∗ +

1
2
(β − µ∗)T V ∗−1(β − µ∗)

]}
=

ba

Γ(a)(2π)(n+p)/2
√
|Vβ|

×
Γ(a∗)(2π)p/2

√
|V ∗|

(b∗)a∗

=
baΓ

(
a + n

2

) √
|V ∗|

(2π)n/2Γ(a)
√
|Vβ |

×
[
b +

1
2

{
µT

β V −1
β µβ + yTy− µ∗V ∗−1µ∗

}]−(a+n/2)

. (19)

6 Marginal distribution: the easy way

An alternative and much easier way to derive p(y |σ2), avoiding any integration at all, is to note

that we can write the above model as:

y = Xβ + ε1, where ε1 ∼ N(0, σ2I);

β = µβ + ε2, where ε2 ∼ N(0, σ2Vβ),

where ε1 and ε2 are independent of each other. It then follows that

y = Xµβ + Xε2 + ε1 ∼ N(Xµβ, σ2(I + XVβXT )).
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This gives p(y |σ2). Next we integrate out σ2 to obtain p(y) as in the preceding section to obtain

In fact, the entire distribution theory for the Bayesian regression with NIG priors could proceed

by completely avoiding any integration. To be precise, we obtain this marginal distribution first

and derive the posterior distribution:

p(β, σ2 |y) =
p(β, σ2)× p(y|β, σ2)

p(y)
=

NIG(µβ , Vβ, a, b)×N(Xβ, σ2I)

MV St2a(Xµ, b
a(I + XVβXT ))

,

which indeed reduces (after some algebraic manipulation) to the NIG(µ∗, V ∗, a∗, b∗) density.

7 Bayesian Predictions

Next consider Bayesian prediction in the context of the linear regression model. Suppose we now

want to apply our regression analysis to a new set of data, where we have observed a new m × p

matrix of regressors X̃, and we wish to predict the corresponding outcome ỹ. Observe that if β

and σ2 were known, then the probability law for the predicted outcomes would be described as

ỹ ∼ N(X̃β, σ2Im) and would be independent of y. However, these parameters are not known;

instead they are summarized through their posterior samples. Therefore, all predictions for the

data must follow from the posterior predictive distribution:

p(ỹ | y) =
∫

p(ỹ | β, σ2)p(β, σ2 | y)dβdσ2

=
∫

N(X̃β, σ2Im)×NIG(µ∗, V ∗, a∗, b∗)dβdσ2

= MV St2a∗

(
X̃µ∗,

b∗

a∗
(I + X̃V ∗X̃T )

)
, (20)

where the last step follows from (18). There are two sources of uncertainty in the posterior predictive

distribution: (1) the fundamental source of variability in the model due to σ2, unaccounted for by

X̃β, and (2) the posterior uncertainty in β and σ2 as a result of their estimation from a finite

sample y. As the sample size n →∞ the variance due to posterior uncertainty disappears, but the

predictive uncertainty remains.
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8 Posterior and posterior predictive sampling

Sampling from the NIG posterior distribution is straightforward: for each l = 1, . . . , L, we sample

σ2(l) ∼ IG(a + n/2, b∗) and β(l) ∼ MV N(µ∗, σ2(l)V ∗). The resulting
{

β(l), σ2(l)
}L

l=1
provide

samples from the joint distribution p(β, σ2 | y) while {β(l)}L
l=1 and {σ2(l)}L

l=1 provide samples

from the marginal posterior distributions p(β | y) and p(σ2 | y) respectively.

Predictions are carried out by sampling from the posterior predictive density (20). Sampling

from this is easy – for each posterior sample (β(l), σ2(l)), we draw ỹ(l) ∼ N(X̃β(l), σ2(l)Im). The

resulting {ỹ(l)}L
l=1 are samples from the desired posterior predictive distribution in (20); the mean

and variance of this sample provide estimates of the predictive mean and variance respectively.

9 The posterior distribution from improper priors

Taking V −1
β → 0 (i.e. the null matrix) and a → −p/2 and b → 0 leads to the improper prior

p(β, σ2) ∝ 1/σ2. The posterior distribution is NIG (µ∗, V ∗, a∗, b∗) with

µ∗ = β̂ = (XT X)−1XTy,

V ∗ = (XT X)−1,

a∗ =
n− p

2
,

b∗ =
(n− p)s2

2
where s2 =

1
n− p

(y−Xβ̂)T (y−Xβ̂) =
1

n− p
yT (I − PX)y, where PX = X(XT X)−1XT .

Here β̂ is the classical least squares estimates (also the maximum likelihood estimate) of β, s2 is

the classical unbiased estimate of σ2 and PX is the projection matrix onto the column space of X.

Plugging in the above values implied by the improper priors into the more general NIG(µ∗, V ∗, a∗, b∗)

density, we find the marginal posterior distribution of σ2 is an IG
(

n−p
2 , (n−p)s2

2

)
(equivalently the

posterior distribution of (n−p)s2/σ2 is a χ2
n−p distribution) and the marginal posterior distribution

of β is a MV Stn−p(β̂, s2XT X) with density:

MV Stn−p(µ∗, s2XT X) =
Γ

(
n
2

)
Γ

(n−p
2

)
πp/2|(n− p)s2(XT X)|−1/2

[
1 +

(β − β̂)T XT X(β − β̂)
(n− p)s2

]−n
2

.

Predictions with non-informative priors again follow by sampling from the posterior predictive

distribution as earlier, but some additional insight is gained by considering analytical expressions
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for the expectation and variance of the posterior predictive distribution. Again, plugging in the

parameter values implied by the improper priors into (20), we obtain the posterior predictive density

as a MV Stn−p

(
X̃β̂, s2(I + X̃(XT X)−1X̃T )

)
.

Note that

E(ỹ|σ2, y) = E[E(ỹ | β, σ2, y) | σ2,y]

= E[X̃β | σ2, y]

= X̃β̂ = X̃(XT X)−1XTy,

where the inner expectation averages over p(ỹ | β, σ2) and the outer expectation averages with

respect to p(β | σ2,y). Note that given σ2, the future observations have a mean which does not

depend on σ2. In analogous fashion,

var(ỹ | σ2, y) = E[var(ỹ | β, σ2, y) | σ2,y] + var[E(ỹ|β, σ2,y)|σ2,y]

= E[σ2Im] + var[X̃β | σ2,y]

= (Im + X̃(XT X)−1X̃T )σ2.

Thus, conditional on σ2, the posterior predictive variance has two components: σ2Im, representing

sampling variation, and X̃(XT X)−1X̃T σ2, due to uncertainty about β.
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